1. 步进电动机的转速
步距角为1.5°,通电频率为2000HZ,就是说每秒能走2000个1.5°,而每360°就是1圈,转速为n=1.5*2000/360=8.333r/s=500r/min 每分钟500圈
2. 步进电动机的转速快慢与输入脉冲的频率成正比
步进电机的转速与脉冲频率成正比,即脉冲频率越高步进电机的转速也越高,但提高了脉冲频率虽然达到了提速作用,却损失了力矩。 力矩随脉冲频率升高而下降的原因: 步进电机产生失步的两个原因就是: 一、控制脉冲频率高,此时转子的加速度小于步进电机定子旋转磁场的速度。 在步进电机供电电源设计好后,定子线圈冲电时间常数基本是固定的,假设时间常数是0.02S(0.02S充电到最大值的63%),如果步进电机接受的脉冲周期大于0.04S(占空比为50%,频率小于25HZ),定子线圈即可以获得足够的能量产生足够带动转子的力矩。如果脉冲频率过高,比如50HZ(占空比为50%,脉冲周期大于0.02S),定子线圈获得的充电时间才0.01S,少了一半的充电时间,产生的力矩就减少了很多,致使转子跟不上定子旋转磁场的速度,每一步都落后于应该到达的平衡位置,并且距离平衡位置越来越远。积累下来的结果就造成了失步. 当然50HZ的频率太小了,本例子只是为了便于说明,随意说了一个数解决方法:1、降低脉冲频率,别认为麻烦,调试步进电机大部分是调节脉冲频率的过程 2、如果不想因降低频率而造成速度太低,那么加大步进电机供电电流 3、减轻电机的负载 二、控制脉冲频率低,此时转子的速度高于步进电机定子旋转磁场的速度。 还以上面的0.02S充电时间常数为例,脉冲频率低,定子线圈充电充分,其产生的力矩就大,此时电机的负载如果较轻,转子就会超过应该到达的平衡位置,定子磁场又要拉转子回到平衡位置,同样其在回平衡位置时又会反越过平衡位置而落后于平衡位置,恰恰此时下一个脉冲到来,于是转子只好在落后于平衡位置的地方开始新一轮的步进。如此循环,同样造成每一步都落后于应该到达的平衡位置,并且距离平衡位置越来越远。积累下来的结果就造成了失步。 解决方法:1、提高脉冲频率 2、不想太高速,那么减小步进电机供电电流。 3,上面两者都不能调节,换力矩小的电机。 伺服电机的说明书上一般都会给出矩频特性图,或是力矩与速的关系表。从大多品牌步进电机的矩频特性可以看出,步进电机在小于600转/分的速度时,输出力矩是正常的。超过1000转/分时,力矩急剧下降(当然也有部分电机在1200转/分时,力矩输出正常). 所以将步进电机的最高转速定为600转/分是较为理想的选择。 当然这个600转/分不是一个通用的数据,具体还得去资讯厂家,向厂家要步进电机的矩频特性。 600转/分的定义只是为了告诉您在选择电机或是前期设计转速,要考虑到步进电机转速小的特点!
3. 步进电动机的转速与脉冲频率成正比
相关概念
与脉冲当量相关的术语。
脉冲当量(P)
数控系统发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小单位。该值越小,机床加工精度和工件表面质量越高;值越大,机床最大进给速度越大。
因此,在进给速度满足要求的情况下,建议设定较小的脉冲当量。
机床所能达到的最大进给速度与脉冲当量的关系为:
例如:朗达4S的硬件频率为1MHz,假设脉冲当量为0.001mm/p,则:
机械减速比(m/n)
减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速的比值。即:
螺距(d)
丝杠上相邻两个螺纹对应点之间的轴距离。
电子齿轮比(B/A)
为伺服驱动器参数(例:安川驱动器,B为PN202,A为PN203),伺服驱动器对接收到上位机的脉冲频率进行放大或缩小。B/A的值大于1为放大,值小于1为缩小。
例如:如果上位机输入频率为100Hz,电子齿轮比分子设为1,分母设为2,那么伺服驱动器实际运行速度按照50Hz的脉冲进行。
如果上位机输入频率100Hz,电子齿轮比分子设为2,分母设为1,那么伺服驱动器实际运行速度按照200Hz的脉冲进行。
编码器分辨率(F)
伺服电机轴旋转一圈所需的脉冲数。查看伺服电机的铭牌,并对应驱动器说明书即可确定编码器分辨率。
下图为安川SGMSH型号电机的铭牌。其中电机型号中第四位是序列编码器规格,该电机分辨率为217,即131072。
例如:某型号机床(配安川驱动器)的丝杠螺距为5毫米,编码器分辨率为17bit,脉冲当量为0.0001mm/p,机械减速比1:1,则:
设定方法
脉冲当量的设定值决定机床的最大进给速度。在进给速度满足要求的情况下,可以设定较小的脉冲当量。
设置脉冲当量后,根据脉冲当量公式计算电子齿轮比或细分数,再设置到驱动器中。
对于不同的电机系统,脉冲当量计算方法不同。
一般来说,对于模具机用户可考虑脉冲当量为0.001mm/p(此时最大进给速度为9600mm/min)或者0.0005mm/p(此时最大进给速度为4800mm/min)。
对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/p(此时最大进给速度为19200mm/min)或0.005mm/p(此时最大进给速度为48000mm/min)。
判断脉冲当量是否正确:
用刀尖在当前位置扎一个点后,对应进给轴走100mm;
再扎一个点,测量两点间距离。
若两点间距离为100mm,则脉冲当量设置无误。
伺服电机
一般情况下,设定脉冲当量(p)为默认值0.001mm/p,再计算电子齿轮比(B/A)。
伺服电机的脉冲当量根据轴类型的不同,可分为:
直线轴
电子齿轮比与脉冲当量的关系为:
旋转轴
旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算伺服电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。
故伺服电机旋转轴脉冲当量的计算方法为:
步进电机
一般情况下,先设定细分数,再计算脉冲当量。也可先设定脉冲当量,再计算细分数。
步进电机的脉冲当量根据轴类型的不同,可分为:
直线轴
脉冲当量和细分数之间的关系为:
例如:某型号机床的X轴选用的丝杠导程为5毫米,步进电机的步距角为1.8度,工作在10细分模式。电机和丝杠采用连轴节直连。那么,X轴的脉冲当量为:
旋转轴
旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算步进电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。
4. 步进电动机的转速与电脉冲的频率成正比
转速与脉冲频率成正比。改变绕组通电的顺序,电机就会反转。所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。
5. 步进电动机的转速与输入脉冲信号的
步进电机实现自动控制转速是通过调节输入驱动器的脉冲频率以及驱动器的细分参数来达到调节步进电机转速的作用,其实就是控制单位时间内步进电机的步数。 步进电机都要有驱动器控制,驱动器的作用是把来自控制端的脉冲信号转变成驱动电机线圈的电流信号,如果是全/半步距角的运动,只要控制电机线圈电流的通断即可,如果是细分驱动的,则要控制绕组线圈的电流大小。如果把驱动器和步进电机看出一个整体,则电机的转动速度由给驱动器的脉冲频率控制,所以要实现自动控制转速,则要有必要的控制电路生成自动出现的控制脉冲来实现。
6. 步进电动机的转速与哪些因素有关?如何改变其转向?
1. 如果用步进电机调速时,只要改变控制器的输出脉冲的频率,就可以实现步进电机的调速。也有厂家推出了内部集成有脉冲发生器的步进驱动器,用户只需输入模拟电信号或通过电位器即可实现步进电机的调速,如英纳仕推出的EZD系列产品。
2. 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角,它的旋转是以固定的角度一步一步运行的。
3. 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。
7. 步进电动机的转速由什么决定
1.步进电机不细分的情况下是200个脉冲转一圈,步进电机转数太高会发生堵转,虽然在不带负载的情况下可以转到每分钟1000转以上,不过那其实没有实际的意义。
2.步进电机其实就是在低数下运行比较好,一般工作状态是每分钟300到600转最好了。
3.公式转数=频率/200*M?(M是细分数)做试验有达到3000转每分钟。
步进电机:
是将电脉冲信号转变为角位移或线位移的开环控制电机。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
步进电机是一种感应电机,由定子和转子两部分组成。它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。按工作原理可分为:反应式步进电机、感应子式步进电机等。
概述:
步进电机又称脉冲电动机,它是一种将电脉冲信号转变为角位移或线位移的执行电动机,它一般用作于开环控制系统的执行装置。近年来由于计算机应用技术的迅速发展,步进电机常用于和计算机组成高精度的数字控制系统。在非超载的情况下,步进电机的转速、停止的位置等只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给其加一个脉冲信号,其就会转动一个步距角,这一线性关系的存在,与其只有周期性误差而无累积误差的特点,使其在速度、位置等控制领域中得到了广泛地应用。
机器简介:
步进电动机是一种将电脉冲信号转换成相应角位移或线位移的电动机,它的运行需要专门的驱动电源,驱动电源的输出受外部的脉冲信号控制。每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。脉冲的数量决定了旋转的总角度,脉冲的频率决定了电动机旋转的速度,改变绕组的通电顺序可以改变电机旋转的方向。在数字控制系统中,它既可以用作驱动电动机,也可以用作伺服电动机。它在工业过程控制中得到广泛的应用,尤其在智能仪表和需要精确定位的场合应用更为广泛。
结构说明:
步进电机主要由两部分组成:定子和转子。它们均有磁性材料构成,其上分别为六个、四个磁极。定子的六个磁极上有控制绕组,两个相对的磁极组成一相。
反应式步进电机原理:
由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。
结构:?电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)
特点:
(1)步进电机没有积累误差:一般步进电机的精度为实际步距角的百分之三到五,且不累积。
(2)步进电机在工作时,脉冲信号按一定顺序轮流加到各相绕组上(由驱动器内的环形分配器控制绕组通断电的方式)。
(3)即使是同一台步进电机,在使用不同驱动方案时,其矩频特性也相差很大。
(4)步进电机与其它电动机不同,其标称额定电压和额定电流只是参考值;又因为步进电机是以脉冲方式供电,电源电压是其最高电压,而不是平均电压,所以,步进电机可以超出其额定值范围工作。但选择时不应偏离额定值太远。
(5)步进电机外表允许的最高温度:步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。
(6)步进电机的力矩会随转速的升高而下降:当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。
(7)步进电机低速时可以正常运转,但若高于一定频率就无法启动,并伴有啸叫声。
8. 步进电动机的转速与什么成正比
当步进电机步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,进而通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。当定子的矢量磁场旋转一个角度。转子也随着该磁场转一个角度。每输入一个电脉冲,电动机转动一个角度前进一步。它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。改变绕组通电的顺序,电机就会反转。所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。