1. 异步电机启动方式
1.电动机启动法:借助一台与待启动电机同磁极对数的异步电动机带动启动
2.异步启动法:先不给同步电动机励磁电流,同步电动机以异步方式运行,待电动机转速接近同步是加入励磁电流牵入同步状态,既两个阶段 异步启动和牵入同步
3.变频启动法:先在转子中加入励磁电流,利用变频器逐步提高定子两端的电源频率,使转子磁极在开始启动时就与旋转磁场建立起稳定的磁拉力》
2. 异步电机的启动方式
软启动 目的就是 让电机 缓慢的转动起来 最后达到正常转速 具体接法 软启动器 都会附带 说明书的 那里会有详细介绍的 和参数设定的 不同生产厂家 的 接法 个不相同 参数设定 也是 有一定区别的
3. 异步电机启动方式有哪几种
三相异步电动机的启动方法有:
直接起动;降压起动直接起动:设备简单,但起动电流大,对电网冲击大。易造成电网瞬间降低。故只有10KW以下电机采用。
降压起动又分为:Y—△起动法;延边△起动法;自耦减压起动法。Y—△起动法;设备简单,但起动转矩小,只适合空载或轻载起动。
延边△起动法;只有特殊绕制的电机才可以使用。自耦减压起动法。方便灵活,但需要专门的起动设备。
4. 异步电机启动方式选择
我们一般在使用大容量三相异步电动机的时候,都会使用启动转换器。为什么呢?因为大功率三相异步电动机启动的时候会产生很大的启动电流,这个电流一般是正常工作电流的8倍左右。这个启动电流会对供电系统,电动机本身影响很大所以一般使用降压启动。方法有星角转换器启动,自耦变压器启动,星角转换器比较简单方便。广泛使用。
5. 异步电机启动方式有哪些
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。
与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。
觉得有用点个赞吧
6. 异步电机启动方式优缺点
永磁同步直驱电机的优点:
1.效率高:
在转子上嵌入永磁材料后,在正常工作时转子与定子磁场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞损耗,提高了电机效率。
2.功率因数高:
永磁同步电机转子中无感应电流励磁,定子绕组呈现阻性负载,电机的功率因数近于 1,减小了定子电流,提高了电机的效率。
同时功率因数的提高,提高了电网品质因数,减小了输变电线路的损耗,输变电容量也可降低,节省了电网投资。
3.起动转矩大:
在需要大起动转矩的设备中,可以用较小容量的永磁电机替代较大容量的Y系列电机。
如果37kw永磁同步电机代替45kW~55kW的Y系列电机,较好地解决了“大马拉小车”的现象,节省了设备投入费用,提高了系统的运行效能。
4.力能指标好 :
Y系列电机在60%的负荷下工作时,效率下降15%,功率因数下降30%,力能指标下降40%;
而永磁同步电机的效率和功率因数下降甚微,当电机只有20%负荷时,其力能指标仍为满负荷的80%以上。
5.温升低:
转子绕组中不存在电阻损耗,定子绕组中几乎不存在无功电流,因而电机温升低。
6 .体积小,重量轻 ,耗材少:
同容量的永磁同步电机体积、重量、所用材料可以减小30%左右。
7.可大气隙化,便于构成新型磁路。
8 .电枢反应小 ,抗过载能力强。
永磁同步直驱电机的缺点:
1.不可逆退磁问题:
如果设计或使用不当,永磁同步电机在过高或过低温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能下降,甚至无法使用。
因此,既要研究开发适用于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构型式的抗去磁能力,以便设计和制造时,采用相应措施保证永磁同步电机不失磁。
2.成本问题:
铁氧体永磁同步电机由于结构工艺简单、质量减轻,总成本一般比电励磁电机低 ,因而得到了广泛应用。
由于稀土永磁目前的价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。
在设计时既需要根据具体使用场合和要求进行性能、价格的比较后取舍,又要进行结构工艺的创新和设计优化,以降低成本。
3 .控制问题:
永磁同步电机不需外界能量 即可维持其磁场,但这也造成从外部调节、控制其磁场极为困难。
但是随着MOSFET、IGBT等电力电子器件和控制技术的发展,大多数永磁同步电机在应用中,可以不进行磁场控制而只进行电枢控制。
设计时需把永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁同步电机在崭新的工况下运行。
7. 三相鼠笼式异步电机启动方式
三相鼠笼电动机启动方法分:自耦变压器降压启动;Y-△降压启动;转子串电阻启动;软启动器;变频器
自耦变压器降压启动
优点:可以直接人工操作,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用。缺点:人工操作要配置较贵的自耦变压器箱(自耦补偿器箱),自动控制要配置自耦变压器、交流接触器等自动设备和元件。
Y-△降压启动
优点:不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现。缺点:只能用于△连接的电动机,大型异步电机不能重载启动。
转子串电阻启动
优点:启动性能好,可以重载启动。缺点:只适用于价格昂贵、结构复杂的绕线式三相异步电动机。
软启动器
优点:降低电压启动,启动电流小,适合所有的空载、轻载异步电动机使用。缺点:启动转矩小,不适用于重载启动的大型电机。
变频器
优点:可以启动重载负荷,性能良好,使用简单。缺点:内部结构复杂,价格昂贵
8. 异步电动机常见的启动方法有哪些
利用启动设备将电源电压适当降低,加到电动机定子绕组上启动电动 机的方法,等到电动机的转速升高到接近工作转速时,再将电压恢复到额定值,降压启动 方法适用于空载或轻载启动的笼式电动机,常用的降压启动方法如下。
1) 自耦变压器降压启动法。启动时将电源接至自耦变压器高压侧,电动机接自耦变压 器的低压侧。 电动机先在低电压下启动,当转速接近额定转速时再将电动机切换至工作电 源,使其在额定电压下运行,同时,也使自耦变压器从电源上切除。
电动机的启动电流、 启动转矩均减至直接启动的1/k2 (k2为自耦变压器的电压比),将自耦变压器和切换开关组 合在一起就是补偿启动器,是一种广泛应用的降压启动设备。 2) Y-A变换启动法。
仅适用于运行时为三角形接线的笼型异步电动机。启动时将定 子绕组改为星形接法,使相绕组电压减为UN/V^,启动后当转速接近额定转速时,再将定 子绕组改为三角形接法运行,启动电流和启动转矩均减至直接启动的1/3,接线方式改变 可通过专用的切换开关(Y-A启动器)来实现。
3) 延边三角形启动法。仅适用于相绕组有中间轴头,正常运行为三角形接法,另一部 分绕组串接在三角形的延边上为星形接法,故称为延边三角形。启动后当转速接近额定转 速时,再改为全三角形接法运行,启动电流,启动转矩下降。
4) 绕线式异步电动机启动,转子绕组通过集电环串接电阻,可以减少转子启动电流, 还增加启动力矩。 随着转速升高,逐渐减少启动电阻直到全部切除,便完成了启动过程。绕线或电动机一般采用频敏电阻器启动,它不仅可达到增加启动转矩,限制启动电流的目 的,由于其阻值随转速升高自动减小,但对要求启动转矩大的电动机不宜采用频敏变阻器启动。
9. 异步电机启动方式的实验报告
交流伺服电机工作时,励磁绕组两端加单相电压作为励磁电源,控制绕组两端施加控制信号电压,两个电压频率相同。
当控制信号电压为0时,气隙内的磁场为脉动磁场,电动机没有启动转矩而不能转动,当控制电压不为0时,且控制绕组电流与励磁绕组电流不同相,就会在气隙内建立大小一定的旋转磁场,此时就是一台分相起动的单相异步电动机,因此电机有了电磁转矩,转子就转起来了,当控制电压强时,电动机转速高,当,控制电压弱时,电动机转速低,当控制电压等于0,电机就不转了。(对于控制电压对转速的影响,可以让信号强时电机气隙接近圆形旋转磁场,弱时椭圆度变大,接近脉振磁场就行了)