返回首页

变压器与电动机配置?

175 2023-12-01 21:16 admin   手机版

一、变压器与电动机配置?

变压器的容量用KVA表示。

电动机消耗的有功功率用kw表示。电动机的视在功率用KVA表示。

例如一个变压器容量为1000KVA,它的含义是如果是纯有功负载,这台变压器可以带1000kw。当然电动机是感性负载,功率因素一般在0.8左右,如果电动机有功功率为100kw,那么电动机的视在功率等于100/0.8=125KVA。

如果是稳定负载,1000KVA的变压器可以带1000KVA负载,但是因为电动机启动电流达到额定电流的3--5倍,电动机启动时变压器会承受很大电流,有可能因为过载而损坏,所以安全起见,变压器的容量应比电动机大很多,再说一个变压器不止一个电动机负载。即使只带一台电动机,变压器容量应大于电动机容量一倍以上。

二、电动机原理及电动机转动过程?

电动机原理是通过电能转换为机械能,促使电动机的转子旋转。电动机转动过程包括:电源通电产生磁场,电流通过定子线圈,定子线圈内部的磁场相互作用产生转矩,转矩作用于转子,推动转子旋转。

转子旋转的速度由电源电压、定子线圈绕组和转子导体的结构等因素决定。

三、变压器各部件的作用,及原理要全,,,求大神?

一、变压器的原理基本点

1.构造:由闭合铁芯和绕在铁芯上的两个线圈组成,如图所示.

①闭合铁芯由涂有绝缘漆的硅钢片叠合而成.

②线圈由绝缘导线绕制而成.

原线圈(初级线圈):与交流电源连接的线圈,其匝数用n₁表示;

副线圈(次级线圈):与负载连接的线圈,其匝数用n₂表示.

2.变压器的工作原理

(1)互感现象是变压器工作的基础.原线圈中电流的大小、方向不断变化,在铁芯中激发的磁场也不断变化,变化的磁场在副线圈中产生感应电动势.

如图所示的理想变压器,当导体棒在匀强磁场中向左做匀速直线运动切割磁感线时,小灯泡发光吗?为什么?

答案:不发光.当导体棒向左做匀速直线运动切割磁感线时,在原线圈中通过的是恒定电流,不能引起穿过副线圈的磁通量变化,在副线圈上无感应电动势,所以小灯泡中无电流通过,不发光.

(2)原、副线圈的作用

原线圈在其所处回路中充当负载,副线圈在其所处回路中充当电源.

(3)能量转化过程:变压器通过闭合铁芯,利用互感现象实现了电能(U₁、I₁)到磁场能(变化的磁场)再到电能(U₂、1₂)的转化.

☞如图所示,把两个没有导线相连的线圈套在同一个闭合铁芯上,一个线圈(原线圈)通过开关可以连接到交流电源的两端,另一个线圈(副线圈)连到小灯泡上.连接电路,接通电源,小灯泡能发光.

(1)两个线圈并没有连接,小灯泡为什么会发光?

(2)若将原线圈接在恒定的直流电源上,小灯泡发光吗?为什么?

答案:

(1)当左边线圈加上交流电压时,左边线圈中就有交变电流,它在铁芯中产生周期性变化的磁场,根据法拉第电磁感应定律知,在右边线圈中会产生感应电动势,右边线圈作为电源给小灯泡供电,小灯泡就会发光.

(2)不发光.因为原线圈接恒定的直流电源时无法在副线圈中产生感应电动势.

☞变压器的副线圈和原线圈电路并不相通,那么原线圈接交变电压U₁后,副线圈是如何产生电压的?

变压器通过闭合铁芯,利用互感现象实现了电能(U₁,l₁)到磁场能(变化的磁场)再到电能(U₂,I₂)的转化.

☞◎变压器的作用

(1)变压器工作的基础是互感现象,变压器只改变交变电流的电压,不改变直流的电压.

(2)变压器改变交变电流的电压,不改变交变电流的周期和频率.

二、电压与匝数的关系

闭合铁芯实现了电能——磁场能——电能的转化,由于原、副线圈中的电流共同产生的磁通量绝大部分通过铁芯,使能量在转化过程中损失很小,为了便于研究,物理学中引入了理想化模型——理想变压器.

理想变压器是指没有能量损失的变压器.理想变压器的特点:

(1)无磁损,即变压器铁芯内无漏磁;

(2)无铜损,即原、副线圈不计内阻,有电流通过时不产生焦耳热;

(3)无铁损,即闭合铁芯内的涡流为零.

☞实际中的回字形变压器(特别是大型变压器)一般都能近似看成理想变压器,而直棒铁芯的变压器不是理想变压器.

1.变压器原、副线圈的电压关系

()对理想变压器,原、副线圈中每一匝线圈都具有相同的△φ/△t,根据法第电磁感应定律有E₁=n₁△φ/△t,E₂=n₂△φ/△t,所以E₁/E₂=n₁/n₂.

(2)由于不计原、副线圈的电阻,因此原线圈两端的电压U₁=E₁,副线圈两端的电压U₂=E₂,所以U/₁U₂=n₁/n₂.

(3)两类变压器及其特点

①降压变压器:n₂<n₁,副线圈两端的电压比原线圈两端电压低的变压器.

②升压变压器:n₂>n₁,副线圈两端的电压比原线圈两端电压高的变压器.

【注意】变压器高压线圈匝数多而导线细,低压线圈匝数少而导线粗,这是高、低压线圈最直接的区别方法.

2.变压器的功率关系

对于理想变压器,不考虑能量的损失,输入功率等于输出功率,即P₁=P₂.

3.变压器原、副线圈中的电流关系

根据理想变压器输入功率等于输出功率,即I₁U₁=I₂U₂,解得I₁/I₂=n₂/n₁,即通过原、副线圈的电流与原、副线圈的匝数成反比,此式仅适用于只有一个副线圈的理想变压器.

4.变压器有多个副线圈时电压等关系(三个关系)

有多个副线圈时,变压器原、副线圈中电压、电流、功率的关系:

(1)电压关系:U₁/n₁=U₂/n₂=U₃/n₃=…,无论副线圈是两个还是更多个,是空载还是有负载,均遵循此式.

(2)电流关系:n₁l₁=n₂l₂+n₃l₃+….

(3)功率关系:P₁=P₂+P₃+….

☞(1)原线圈和副线圈有共同的铁芯,穿过它们的每匝线圈的磁通量和磁通量的变化率时刻都相等.

(2)当副线圈有多个线圈时,电压关系仍适用,而电流关系式I₁/I₂=n₂/n₁不再适用.变压器的电动势关系、电压关系和电流关系是有效值(或最大值)间的关系,对某时刻的瞬时值关系不成立.

☞根据能量守恒推导理想变压器有多个副线圈时,原、副线圈中的电流与匝数的关系.

答案:理想变压器的输入功率等于输出功率,即P入=P出.

若有多个副线圈,则

P₁=P₂+P₃+…,即U₁l₁=U₂l₂+U₃l₃+…①

U₁/n₁=U₂/n₂=U₃/n₃=……②

联立①②解得n₁l₁=n₂l₂+n₃l₃+…

变压器空载或副线圈短路时出现的情况

变压器空载时,无电流、电功率输出,所以输入功率也为零;当副线圈短路时,副线圈中电流I₂无穷大,则原线圈中电流I₁也无穷大,将会把变压器烧坏.

三、常见变压器

1.自耦变压器

如图所示,铁芯上只绕一个线圈,低压线圈是高压线圈的一部分,既可以作为升压变压器使用,也可以作为降压变压器使用.

规律:自耦变压器只有一个线圈,每匝线圈产生的电动势E=△φ/△t相同,故U₁/U₂=n₁/n₂成立.

☞通过自耦变压器,可以从零至最大值连续调节所需电压,与分压器类似.

2.互感器

(1)电压互感器:并联在被测电路中,实质是降压变压器,可以把高电压变成低电压,故原线圈匝数n₁大于副线圈匝数n₂.如图甲所示.

(2)电流互感器:串联在被测电路中,实质是升压变压器,可以把大电变成小电流,故原线圈匝数n₁小于副线圈匝数n₂如图乙所示.

☞交流电压表和交流电流表都有一定的测量范围,不能直接测量高电压和大电流互感器是利用变压器的原理将不能直接测量的高电压和大电流变换成低电压、小电流后再进行测量.

例题:某理想变压器原、副线圈的匝数之比为1:10,当输入电压增加20V时,输出电压()

A.降低2V

B.增加2V

C.降低200V

D.增加200V

☞等比性质,或用特值法求解.

例题:如图所示,在铁芯上、下分别绕有匝数n₁=800和n₂=200的两个线圈,上面线圈两端与u=51sin314t(V)的交流电源相连,将下面线圈两端接交流电压表,则交流电压表的读数可能是()

A.2.0V

B.9.0V

C.12.7V

D.144.0V

例题:如图所示,甲图中两条导轨不平行,而乙图中两条导轨平行,其余物理条件都相同,金属棒M正在导轨上向右匀速运动,在金属棒运动过程中,将观察到()

A.L₁、L₂都发光,只是亮度不同

B.L₁、L₂都不发光N

C.L₂发光,L₁不发光

D.L₁发光,L₂不发光

例题:为了监测变电站向外输电情况,要在变电站安装互感器,其接线如图所示,两变压器原、副线圈匝数分别为n₁、n₂和n₃、n₄,a和b是交流电表,则(AD)

A.n₁>n₂

B.n₃>n₄

C.a为交流电流表,b为交流电压表

D.a为交流电压表,b为交流电b

例题:如图所示,理想变压器原、副线圈的匝数比n₁:n₂:n₃=3:1:1,三个灯泡的规格均相同,此时L的功率为P。假定灯泡的电阻不随电压变化而改变,则下列说法正确的是()

A.L₂的功率为P/3

B.L₂的功率为P/9

C.I₁:I₂=3:1

D.I₁:I₂=1:3

例题:如图所示,发电机的矩形线圈长为2L、宽为L,匝数为N,放置在磁感应强度大小为B的匀强磁场中。理想变压器的原、副线圈匝数分别为n₀、n₁和n₂,两个副线圈分别接有电阻R₁和R₂。当发电机线圈以角速度ω匀速转动时,理想电流表读数为I。不计线圈电阻,下列说法正确的是()

例题:一理想变压器的原线圈匝数n₁=100匝,副线圈匝数n₂=30匝、n₃=20匝,一个电阻为48.4Ω的小灯泡接在两个副线圈上,如图所示.当原线圈与e=220√2 sin ωt(V)的交流电源连接后,变压器的输入功率是(A)

A.10W

B.20W

C.250W

D.500W

例题:如图所示,理想变压器有两个副线圈,输出电压分别为5V和3V,要获得8V输出电压(两个副线圈的绕向和输出端如图所示),两个副线圈连接方法是(AB)

A.b、c连接,a、d两端输出

B.a、d连接,b、c两端输出

C.a、c连接,b、d两端输出

D.b、d连接,a、c两端输出

例题:某理想自耦变压器接入电路中的示意图如图甲所示,图乙所示是其输入电压u的变化规律。已知滑动触头P在图示位置时,原、副线圈的匝数比为n₁:n₂=10:1,电阻R=22Ω。下列说法正确的是()

例题:如图所示,一台变压器的原线圈与电压有效值为3.0kV的交流电源相连,副线圈上接有一电动机M,电动机正常工作时两端的电压为120V,消耗的功率为1.0kW,变压器的效率(效率指的是变压器的输出功率与输入功率的比值)为97%,不计导线的电阻,则(A)

A.交流电源提供的电流约为0.34A

B.电动机的电阻约为14.4Ω

C.变压器的输入功率为0.97kW

D.变压器的匝数比为25:1

例题:如图所示,一交流电源电压u=220√2sin100πt(V),通过理想变压器对电路供电,已知原、副线圈匝数比为10:1,L₁灯泡的额定功率为4W,L₂灯泡的额定功率为20W,排气扇电动机线圈的电阻为1Ω,电流表的示数为2A,用电器均正常工作,电表均为理想电表,则(C)

A.流过L₁的电流为20A

B.排气扇电动机的发热功率为2W

C.整个电路消耗的功率为44W

D.排气扇电动机的输出功率为20W

注明:以上资料取自于网络

四、什么是制造电动机,变压器?

就是指电机厂研发、设计和生产电动机和变压器。

五、电动机变压器电阻公式?

变压器的短路阻抗计算公式:Z=Uk%*Un平方*1000/(100Sn),其中Uk为短路电压,Un为额定电压,Sn为容量。

例如有一台Se=100KVA,10/0.4KV三绕组变压器,短路电压Uck%=4.3% ,计算短路阻抗。

则10KV侧额定电流为100/(10X1.732)=5.7737A,

低压侧反应到高压侧的电流为5.7737/4.3%X100%=134.3A,

阻抗Z=U/(1.732 Id)=10X1000/(1.732X134.3)=43 (Ω)

六、变压器电动机利用涡流原理?

涡流的原理:电磁感应作用在导体内感生的电流。

涡流是涡电流的简称,迅速变化的磁场在整块导体(包括半导体)内引起的感生电流,其流动的路线呈漩涡形,这就是涡流。磁场变化造快,感生电动势就越大,因而涡流也就越强。涡流能使导体发热。

在磁场发生变化的装置中,往往把导体分成一组相互绝缘的薄片(缸电机、变压器的铁心)或一束细条(如感应圈铁心),以减低涡流强度,从而减少能量损耗。当需要产生高温时,又可利用涡流来取得热量,如高频电炉就是根据这一原理设计的。

七、电动机振动原因及处理?

电动机产生不正常的振动和异常音响主要有机械和电磁两方面的原因。

机械方面的原因:

①、电机风叶损坏或紧固风叶的螺丝松动,造成风叶与风叶盖相碰,它所产生的声音随着碰击声的轻重,时大时小;

②、由于思承磨损或轴不当,造成电动机转子偏心严重时将使定、转子相擦,使电动机产生剧烈的振动和不均匀的碰擦声;

③、电动机因长期使用致使地脚螺丝松动或基础不牢,因而电动机在电磁转矩作用下产生不正常的振动;

④、长期使用的电动机因轴承内缺乏润滑油形成于磨运行或轴承中钢珠损坏,因而使电动机轴承室内发出异常的咝咝声或咕噜声。

电磁方面原因:

①、正常运行的电动机突然出现异常音响,在带负载运行时转速明显下降,发出低沿的吼声,可能是三相电流不平衡,负载过重或单相运行;

②、正常运行的电动机,如果定子、转子绕组发生短路故障或鼠笼转子断条则电动机会发出时高时低的翁翁声。机身也随之振动。

处理方法:

1. 电气原因的检修:首先是测定定子三相直流电阻是否平衡,如不平衡,则说明定子连线焊接部位有开焊现象,断开绕组分相进行查找,另外绕组是否存在匝间短路现象,如故障明显可以从绝缘表面看到烧焦痕迹,或用仪器测量定子绕组,确认匝间短路后,将电机绕组重新下线。例如:水泵电机,运行中电机不仅振动大轴承温度也偏高小修试验发现电机直流电阻不合格,电机定子绕组有开焊现象,用排除法将故障找到消除后,电机运行一切正常。

2. 机械原因的检修:检查气隙是否均匀,如果测量值超标,重新调整气隙。检查轴承,测量轴承间隙,如不合格更换新轴承,检查铁心变形和松动情况,松动的铁心可用环氧树脂胶粘接灌实,检查转轴,对弯曲的转轴进行补焊重新加工或直接直轴,然后对转子做平衡试验。打风机电机大修后试运行期间,电机不仅振动大,而且轴瓦温度超标,几天后,故障仍未解决。我班组人员在帮助处理时发现,电机气隙非常大,瓦座水平也不合格,故障原因找到后,重新调整各部间隙后,电机试转一次成功。

3. 负载机械部分检查正常,电机本身也没有问题,引起故障的原因是连接部分造成的,这时要检查电机的基础水平面,倾斜度、强度,中心找正是否正确,联轴器是否损坏,电机轴伸绕度是否符合要求等。

八、电动机变频技术及节能的主要工作原理是什么?

变频器使用的调速方法是通过改变定子频率进行异步电动机转速的调节。电动机的旋转速度与频率成比例,故改变频率可以成正比改变电动机的旋转速度。电动机使用变频器的作用就是为了调速,并降低启动电流。

变频器主要是利用电力半导体器件的通断作用,使得频率无法改变的交流电转换成可以改变的直流电,从而实现变频调速,而且这些情况是在不改变电压的情况下发生的。变频器是变频技术的主要载体,它的原理是应用变频技术与微电子技术,通过改变电动机工作电源频率方式来控制交流电动机。其构成比较复杂,可以改变电流频率解决了设备寿命短、耗费大量电能的问题,使得企业的成本得到更好的优化与节约。

电动机变频的节能方法主要有:变频调速节能法、提高功率因数节能法、软启动节能法。

变频调速节能法:设备容量过大可能会产生浪费工频运行的情况,通过变频调速的手段,降低设备的运行速度可以产生非常显著的节能效果。

提高功率因数节能法:有些时候不必要对电动机进行调速,这时提高功率因数就成为变频器节能效果的主要表现,它能减少线路功率的消耗。

软启动节能法:电动机全压启动、星一三角降压启动和自耦变压器减压启动时,启动的电流能达到4~6倍的额定电流。启动电流如此之大,会增加电路功率的耗损,引发线路电压的波动、冲击机械设备与电网。因此在设计供电系统时须增加变压器的容量,来阻止过大的启动电流对设备造成的损害。

更多专业内容可以前往江苏能源云网查看。

九、电动机变频技术及节能的主要工作原理是什么?

变频器使用的调速方法是通过改变定子频率进行异步电动机转速的调节。电动机的旋转速度与频率成比例,故改变频率可以成正比改变电动机的旋转速度。电动机使用变频器的作用就是为了调速,并降低启动电流。

变频器主要是利用电力半导体器件的通断作用,使得频率无法改变的交流电转换成可以改变的直流电,从而实现变频调速,而且这些情况是在不改变电压的情况下发生的。变频器是变频技术的主要载体,它的原理是应用变频技术与微电子技术,通过改变电动机工作电源频率方式来控制交流电动机。其构成比较复杂,可以改变电流频率解决了设备寿命短、耗费大量电能的问题,使得企业的成本得到更好的优化与节约。

电动机变频的节能方法主要有:变频调速节能法、提高功率因数节能法、软启动节能法。

更多专业问答请关注江苏能源云网

十、变压器种类及区别?

根据其用途和构造形式的不同,变压器可分为多种类型。以下是常见的几种变压器及其区别:

1. 功能变压器:其主要作用是将电压降低或提高到需要的电压值,通常用于电源和电器之间的电压匹配。在构造上,功能变压器只有一个铁心和一组绕组。

2. 隔离变压器:其主要作用是将电气设备与电源隔离开来,为电气设备提供安全保护。在构造上,隔离变压器有两个绕组和一个铁心,两个绕组互相隔离,电源和电气设备之间相互隔离。

3. 自耦变压器:其主要作用是提供变压器功能的同时,使得电路中的一部分电压相对地升高或降低。在构造上,自耦变压器有一个铁心和两个绕组,其中一个绕组是另一个的一部分,两个绕组共用部分磁路。

4. 电感耦合器:其主要作用是传输电磁场能量,用于工业和通信系统。在构造上,电感耦合器有两个绕组和一个铁心,两个绕组之间没有电气联系,通过磁性耦合传递电磁场能量。

5. 开关电源变压器:其主要作用是将交流电转换为直流电,通常用于电子产品中,例如手机、电脑等。在构造上,开关电源变压器有多个绕组和一个铁心,通过开关转换技术将输入电压变为所需要的输出电压。

这些变压器在用途和构造上有不同,能够满足不同电气系统的需求。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片