1. 步进电动机有哪些性能指标
起动频率又称突跳频率,是指步进电机能够不失步起动的最高脉冲频率,是步进电机一项重要指标。产品目录上一般都有空载起动频率的数据,但在实际使用时,步进电机大都要在带负载的情况下起动。这时负载起动频率是一个重要指标。负载起动频率与负载转矩及惯量的大小有关。负载惯量一定,负载转矩增加,或负载转矩一定,负载惯量增加都会使起动频率下降,在一定的负载惯量下,起动频率随负载转矩变化的特性称为起动矩频特性,通常以表格或曲线形式给出。
2. 步进电机有哪些主要性能指标
大家都知道步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。那么,有没有知道步进电机的矩频特性呢?下面由信浓步进电机厂家讲述一下:
选择步进电机时,最主要的任务之一就是要详细规定电动机的标称转矩值,一般,最大静转矩较大的电机,可以带动较大的负载转矩,负载转矩和最大静转矩的比值通常取为0.3~O.5,即TL=(O.3~0.5)Tjmax,按最大静转矩的值可以把步进电机分为伺服步进电机和功率步进电机,前者输出力矩较小,有时需要经过液压力矩放大器或伺服功率放大系统放大后再去带动负载,而功率步进电机的最大静转矩一般大于0.05Nm,它不需要力矩放大装置就能直接带动负载运动,这不仅大大简化了系统,而且提高了传动精度。
矩频特性:电动机的性能在很大程度上不仅仅取决于矩角特性的形状,而且取决于矩频特性,首先需要根据前面计算出的脉冲速度和运行需要的转矩,作出速度一转矩曲线,将该曲线与步进电机生产厂家的矩频特性曲线比较,若计算曲线在产品特性之下,则可选择相应的电机和驱动器,步进电机的动态转矩与驱动器的形式有很大的关系,因而选用时必须了解给出的性能指标是在何种型式的电源及驱动下测定的
3. 步进电动机有哪些性能指标呢
1.设置步进驱动器的细分数,通常细分数越高,控制分辨率越高。但细分数太高则影响到最大进给速度。一般来说,对于模具机用户可考虑脉冲当量为0.001mm/P(此时最大进给速度为9600mm/min)或者0.0005mm/P(此时最大进给速度为4800mm/min);对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/P(此时最大进给速度为19200mm/min)或0.005mm/P(此时最大进给速度为48000mm/min)。对于两相步进电机,脉冲当量计算方法如下:脉冲当量=丝杠螺距÷细分数÷200。
2.起跳速度:该参数对应步进电机的起跳频率。所谓起跳频率是步进电机不经过加速,能够直接启动工作的最高频率。合理地选取该参数能够提高加工效率,并且能避开步进电机运动特性不好的低速段;但是如果该参数选取大了,就会造成闷车,所以一定要留有余量。在电机的出厂参数中,一般包含起跳频率参数。但是在机床装配好后,该值可能发生变化,一般要下降,特别是在做带负载运动时。所以,该设定参数最好是在参考电机出厂参数后,再实际测量决定。
3.单轴加速度:用以描述单个进给轴的加减速能力,单位是毫米/秒平方。这个指标由机床的物理特性决定,如运动部分的质量、进给电机的扭矩、阻力、切削负载等。这个值越大,在运动过程中花在加减速过程中的时间越小,效率越高。通常,对于步进电机,该值在100 ~ 500之间,对于伺服电机系统,可以设置在400 ~ 1200之间。在设置过程中,开始设置小一点,运行一段时间,重复做各种典型运动,注意观察,如果没有异常情况,然后逐步增加。如果发现异常情况,则降低该值,并留50%~100%的保险余量。
4.弯道加速度:用以描述多个进给轴联动时的加减速能力,单位是毫米/秒平方。它决定了机床在做圆弧运动时的最高速度。这个值越大,机床在做圆弧运动时的最大允许速度越大。通常,对于步进电机系统组成的机床,该值在400~1000之间,对于伺服电机系统,可以设置在1000 ~ 5000之间。如果是重型机床,该值要小一些。在设置过程中,开始设置小一点,运行一段时间,重复做各种典型联动运动,注意观察,如果没有异常情况,然后逐步增加。如果发现异常情况,则降低该值,并留50%~100%的保险余量
4. 步进电动机的性能指标
要知道转速,细分,力矩!就可以算出大概的功率!一般一牛米约为60(70)W
5. 常用的步进电动机的性能指标有哪些?其含义是什么?
步进电机的控制策略:
1、PID控制
PID控制作为一种简单而实用的控制方法,在步进电机驱动中获得了广泛的应用。它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),将偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。文献将集成位置传感器用于二相混合式步进电机中,以位置检测器和矢量控制为基础,设计出了一个可自动调节的PI速度控制器,此控制器在变工况的条件下能提供令人满意的瞬态特性。文献根据步进电机的数学模型,设计了步进电机的PID控制系统,采用PID控制算法得到控制量,从而控制电机向指定位置运动。最后,通过仿真验证了该控制具有较好的动态响应特性。采用PID控制器具有结构简单、鲁棒性强、可靠性高等优点,但是它无法有效应对系统中的不确定信息。
目前,PID控制更多的是与其他控制策略相结合,形成带有智能的新型复合控制。这种智能复合型控制具有自学习、自适应、自组织的能力,能够自动辨识被控过程参数,自动整定控制参数,适应被控过程参数的变化,同时又具有常规PID控制器的特点。
2、自适应控制
自适应控制是在20世纪50年代发展起来的自动控制领域的一个分支。它是随着控制对象的复杂化,当动态特性不可知或发生不可预测的变化时,为得到高性能的控制器而产生的。其主要优点是容易实现和自适应速度快,能有效地克服电机模型参数的缓慢变化所引起的影响,是输出信号跟踪参考信号。文献研究者根据步进电机的线性或近似线性模型推导出了全局稳定的自适应控制算法,这些控制算法都严重依赖于电机模型参数。文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精确的位置控制和较高较平稳的转速。
目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的最大化补偿及伺服系统低速高精度的跟踪控制性能。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。
3、矢量控制
矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制,从而获得良好的解耦特性,因此,矢量控制既需要控制定子电流的幅值,又需要控制电流的相位。由于步进电机不仅存在主电磁转矩,还有由于双凸结构产生的磁阻转矩,且内部磁场结构复杂,非线性较一般电机严重得多,所以它的矢量控制也较为复杂。文献[8]推导出了二相混合式步进电机d-q轴数学模型,以转子永磁磁链为定向坐标系,令直轴电流id=0,电动机电磁转矩与iq成正比,用PC机实现了矢量控制系统。系统中使用传感器检测电机的绕组电流和转自位置,用PWM方式控制电机绕组电流。文献推导出基于磁网络的二相混合式步进电机模型,给出了其矢量控制位置伺服系统的结构,采用神经网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿,通过最大转矩/电流矢量控制实现电机的高效控制。
4、智能控制的应用
智能控制不依赖或不完全依赖控制对象的数学模型,只按实际效果进行控制,在控制中有能力考虑系统的不确定性和精确性,突破了传统控制必须基于数学模型的框架。目前,智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制、神经网络和智能控制的集成。
4.1模糊控制
模糊控制就是在被控制对象的模糊模型的基础上,运用模糊控制器的近似推理等手段,实现系统控制的方法。作为一种直接模拟人类思维结果的控制方式,模糊控制已广泛应用于工业控制领域。与常规控制相比,模糊控制无须精确的数学模型,具有较强的鲁棒性、自适应性,因此适用于非线性、时变、时滞系统的控制。文献[16]给出了模糊控制在二相混合式步进电机速度控制中应用实例。系统为超前角控制,设计无需数学模型,速度响应时间短。
4.2神经网络控制
神经网络是利用大量的神经元按一定的拓扑结构和学习调整的方法。它可以充分逼近任意复杂的非线性系统,能够学习和自适应未知或不确定的系统,具有很强的鲁棒性和容错性,因而在步进电机系统中得到了广泛的应用。文献将神经网络用于实现步进电机最佳细分电流,在学习中使用Bayes正则化算法,使用权值调整技术避免多层前向神经网络陷入局部极小点,有效解决了等步距角细分问题。
6. 步进电机的性能
主要优势 · 提高生产效率:采用stealthchop™技术,提供对负载和噪声抑制参数的访问,可实时调节更多参数,
7. 步进电机参数有哪些
您是问混合式还是永磁式步进电机,永磁式步进电机目前市面上最小直径4mm,用于手机照相调焦距,永磁式小尺寸相对比较多。
混合式目前市面上批量出货的最小尺寸是14mm*14mm,听说也有厂家开发了12mm法兰尺寸的,但市面上没有看到。
8. 步进电机有哪些技术指标
由于步进电机及驱动器型号较多、种类较多,用户在选择时应有一定的讲究,这样才能以最优的性能、最低的价格选择好自己所需的产品。选取原则(仅供参考):
1、首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。或者根据负载特性从理论上计算出来。由于步进电机是控制类电机,所以目前常用步进电机的最大力矩不超过45Nm,力矩越大,成本越高,如果您所选择的电机力矩较大或超过此范围,可以考虑加配减速装置。
2、确定步进电机的最高运行转速。转速指标在步进电机的选取时至关重要,步进电机的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机大小等等,一般的规律是:驱动电压越高,力矩下降越慢;电机的相电流越大,力矩下降越慢。在设计方案时,应使电机的转速控制在600转/分或800转/分以内,当然这样说很不规范,可以参考〈矩-频特性〉。
3、根据负载最大力矩和最高转速这两个重要指标,再参考〈矩-频特性〉,就可以选择出适合自己的步进电机。如果您认为自己选出的电机太大,可以考虑加配减速装置,这样可以节约成本,也可以使您的设计更灵活。要选择好合适的减速比,要综合考虑力矩和速度的关系,选择出最佳方案。
4、最后还要考虑留有一定的(如50%)力矩余量和转速余量。
5、可以先选择混合式步进电机,如果由于价格因素,可以选取反应式步进电机。
6、尽量选取细分驱动器,且使驱动器工作在细分状态。
7、选取时且勿走入只看电机力矩这一个指标的误区,也就是说并非电机的扭矩越大越好,要和速度指标一起考虑。
8、超小型驱动器和微型驱动器是靠外壳作为散热器的,应固定在较大、较厚的金属板上或外加风机散热,如果没有散热条件,而驱动器又工作在转速较低的场合(这时驱动器发热较大),可以选用带风机的90型驱动器代替。