一、氧气的转动惯量?
1、转动惯量 moment of inertia是指一个质量为m的物体,最转动中心的惯性;这个惯性,既跟转动物体的质量成正比,又跟距离的平方成反比。2、转动惯量一般用 I 表示,是 i 的大写平动跟转动的对比:平动动能 = ½ mv² = (½) 乘以 (平动惯量 m) 乘以 平动线速度的平方;转动动能 = ½ Iω² = (½) 乘以 (转动惯量 I) 乘以 转动角速度的平方。
二、转动惯量的测定?
转动惯量测定方法
测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。三线摆是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义。
三、圆弧的转动惯量?
1、平面曲线L的线密度是f(x,y),关于x轴,y轴的转动惯量Ix=∫(L) y^2f(x,y)ds,Iy=∫(L) x^2f(x,y)ds-------以原点为圆心,x轴为对称轴,圆弧的方程是x^2+y^2=R^2,参数方程是x=Rcost,y=Rsint,-a≤t≤a.ds=Rdt.这里的圆弧应该是均匀圆弧吧?那就是线密度为常数μ,所以圆弧关于x轴的转动惯量Ix=∫(L) y^2 μds=∫(-a到a) (Rsint)^2*μ*Rdt=2μR^3∫(0到a) (sint)^2dt=μR^3∫(0到a) (1-cos2t)dt=μR^3(a-sinacosa)2、平面曲线L的线密度是f(x,y),质心坐标X=∫(L) yf(x,y)ds / ∫(L) f(x,y)ds,Y=∫(L) xf(x,y)ds / ∫(L) f(x,y)ds------ds=2asin(t/2)dt设摆线的线密度是常数μ,则质量M=∫(L) μds=∫(0到π) μ*2asin(t/2)dt=4aμ,静力矩Mx=∫(L) yμds=∫(0到π) μ*a(1-cost)*2asin(t/2)dt=16μa^2/3,My=∫(L) xμds=∫(0到π) μ*a(t-sint)*2asin(t/2)dt=μa^2(π^2-8)所以,X=My/M=μa^2(π^2-8) / 4μa=a(π^2-8)/4,Y=Mx/M=(16μa^2/3)/ 4μa=4a/3,质心坐标是(a(π^2-8)/4,4a/3)
四、棒的转动惯量?
条件是轴垂直于质量分布均匀杆,在杆一侧。设杆质量为m,长度为L。因为质量分布均匀,随位置分布的质量密度为m/L。
取转轴位置为原点,杆延伸方向为x轴,则位置在x附近质量微元的转动惯量为(m/L)x²dx,对长度在0-L积分I=∫(m/L)x²dx=〔(m/L)×L³〕/3=1/3mL²
五、转动惯量的推导?
先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
E=(1/2)mv^2 (v^2为v的2次方)
把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)
得到E=(1/2)m(wr)^2
由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,K=mr^2
得到E=(1/2)Kw^2
K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。
如何计算转动惯量呢
旋转物体相对于其旋转轴的转动惯量I等于它的质量与它本身到旋转轴距离的平方的乘积。但是,这个算法只对均匀物体有效,比如说一个绑在绳子上的以一定角速度旋转的球体。
我们将物体质量进行微分,将物体分为无穷个小质量块微分dm,转动惯量的微分即为dI = r^²dm。要计算物体总质量M的转动惯量I,我们将物体质量微分dm对应的转动惯量的微分dI进行求和。或者简而言之,我们对其进行积分:
一根细杆的转动惯量
假设一个细杆的质量为M,长度为L,其线性密度λ即为M/L。根据其旋转轴的位置,细杆具有两个矩:一个是当旋转轴垂直穿过细杆的中心,同时穿过细杆的重心;第二个是当轴垂直于细杆的一端。
旋转轴穿过重心
与无穷个小质量块微分dm类似,假设其具有无穷个小长度单元微分dl,将重心的原点置于旋转轴上,我们会发现从原点到左端的距离为-L/2,而从原点到右端的距离是+L/2。
如果细杆是均匀物体,那么其线密度是一个常量
将式子中dm的值带入转动惯量的计算,可得:
由于现在的积分分量为长度(dl),积分上下限需要从之前公式中的质量M改为需要分量长度L。
旋转轴垂直于一端
为了计算旋转轴垂直于细杆一端的转动惯量,我们将原点放在细杆的末端。
我们使用的是同样的等式,但是依旧要改变积分上下限,因为现在旋转轴位于末
六、转动惯量的量纲?
刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理: M=Jβ 其中M是扭转力矩 J是转动惯量 β是角加速度 例题: 现在已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩? 分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L. 根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s 电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2。 所以M=Jβ =mr^2/2△ω/△t =ρπr^2hr^2/2△ω/△t =7.8*10^3 *3.14* 0.04^2 * 0.5 * 0.04^2 /2 * 500/60/0.1 =1.2786133332821888kg/m^2 单位J=kgm^2/s^2=N*m
七、钟摆的转动惯量?
对于细杆
(1)当回转轴过杆的中点(质心)并垂直于杆时,其中m是杆的质量,L是杆的长度:
(2)当回转轴过杆的端点并垂直于杆时,其中m是杆的质量,L是杆的长度:
2、对于圆柱体
当回转轴是圆柱体轴线时,其中m是圆柱体的质量,r是圆柱体的半径:
3、对于细圆环
当回转轴通过环心且与环面垂直时:
当回转轴通过环边缘且与环面垂直时:
沿环的某一直径,R为其半径:
4、对于薄圆盘
当回转轴通过中心与盘面垂直时:
当回转轴通过边缘与盘面垂直时,R为其半径:
5、对于空心圆柱
当回转轴为对称轴时,R1和R2分别为其内外半径。
6、对于球壳
当回转轴为中心轴时,R为球壳半径:
当回转轴为球壳的切线时:
7、对于实心球体
当回转轴为球体的中心轴时,R为球体半径:
当回转轴为球体的切线时:
8、对于立方体
当回转轴为其中心轴时,L为立方体边长:
当回转轴为其棱边时:
当回转轴为其体对角线时:
9、对于长方体
当回转轴为其中心轴时,式中l1和l2是与转轴垂直的长方形的两条边长
八、转动惯量的公式?
I=mr²。
转动惯量
计算公式:I=mr²。在经典力学
中,转动惯量(又称质量惯性矩
,简称惯距)通常以I或J表示,SI单位为kg·m²。对于一个质点,I=mr²,其中m是其质量,r是质点和转轴的垂直距离。
转动惯量计算公式:
1、对于细杆:
当回转轴过杆的中点(质心
)并垂直于杆时I=mL²/I²;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL²/3;其中m是杆的质量,L是杆的长度。
2、对于圆柱体:
当回转轴是圆柱体轴线时I=mr²/2;其中m是圆柱体的质量,r是圆柱体的半径。
3、对于细圆环:
当回转轴通过环心且与环面垂直时,I=mR²;当回转轴通过环边缘且与环面垂直时,I=2mR²;I=mR²/2沿环的某一直径;R为其半径。
4、对于立方体:
当回转轴为其中心轴时,I=mL²/6;当回转轴为其棱边时I=2mL²/3;当回转轴为其体对角线
时,I=3mL²/16;L为立方体边长。
5、对于实心球体:
当回转轴为球体的中心轴时,I=2mR²/5;当回转轴为球体的切线
时,I=7mR²/5;R为球体半径。
九、什么是转动惯量?刚体的转动惯量与什么有关?
刚体任一质点M(i),其到转轴的距离R(i),转动惯量J=∑M(i)R(i)R(i),它是表示物体保持自己转动状态的能力的量,相当于平动问题中的质量。转动惯量与物体的形状、转轴位置、质量相对于转轴的分布情况有关。
十、什么转动惯量?
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。
- 相关评论
- 我要评论
-