1. 低碳钢的弹性模量实验报告
低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2屈服阶段 应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。 该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。 钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。 3 强化阶段 抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。 常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。
2. 低碳钢的弹性模量实验报告数据
低碳钢的工作特性可分为以下四个阶段:
1 弹性阶段
随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段
应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。
该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。
钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段
抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。
常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段
材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。
通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
3. 低碳钢的弹性模量实验报告实验数据
低碳钢从受拉至拉断,分为以下四个阶段。
1 弹性阶段
随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段
应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。
该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。
钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段
抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。
常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段
材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。
通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
4. 低合金钢的弹性模量
弹性模量说的是材料,元素是物质的组成类别,同样是碳元素组成的物质,金刚石比石墨模量高
5. 碳钢 弹性模量
304不锈钢的硬度:≤201HBW;≤92HRB;≤210HV。
密度(20℃,g/cm3):7.93;
熔点(℃):1398~1454;
比热容(0~100℃,KJ·kg-1K-1):0.50;
热导率(W·m-1·K-1):(100℃)16.3,(500℃)21.5;
线胀系数(10-6·K-1):(0~100℃)17.2,(0~500℃)18.4;
电阻率(20℃,10-6Ω·m2/m):0.73;
纵向弹性模量(20℃,KN/mm2):193;
抗拉强度 σb (MPa)≥515-1035;
条件屈服强度 σ0.2 (MPa)≥205;
伸长率 δ5 (%)≥40。
碳钢的硬度131~156HBS。HBS(布氏硬度)是硬度指标。
20#钢的力学性能:
(1)相变点温度(近似值)Ac1=735℃,Ac3=855℃,Ar3=835℃,Ar1=680℃
(2)正火规范 温度920~950℃,出炉空冷。硬度131~156HBS。
(3)冷压毛坯软化处理规范 温度700~720℃,保温时间8~15h,再以50~100℃/h的冷速,随炉降至温度≤550~600℃,出炉空冷。处理前硬度≤143HBS,软化后硬度≤131HBS。
6. 低碳钢弹性模量实验报告总结
弹性变形阶段、屈服阶段、强化阶段、缩颈阶段;
1 弹性阶段 随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段 应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。 该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。 钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段 抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。 常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段 材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。 通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
7. 金属弹性模量实验报告
影响弹性模量的因素即影响原子间结合力的因素。
(1)键合方式:共价键和离子键结合力强,弹性模量E较大;金属键和分子键结合力弱,E较低。(2)晶体结构因材料的方向不同差别很大,排列越致密的方向结合越紧密,E越大。(3)温度大部分固体,受热后渐渐开始膨胀、变软,原子间结合力减弱,弹性常数降低。(4)复相的弹性模量在二相系统中,总模量介于高模量成分和低模量成分间,类似于二相系统的热膨胀系数,通过假定材料有许多层组成,这些层平行或垂直于作用单轴应力,找出最宽的可能界限。
8. 低碳钢的弹性模量实验报告怎么写
低碳钢从受拉至拉断,分为以下四个阶段。
1 弹性阶段
随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段
应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。
该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。
钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段
抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。
常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段
材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。
通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
9. 测低碳钢的弹性模量
分为四个阶段
第一个阶段为弹性阶段
第二个阶段为屈服阶段
第三个阶段为强化阶段
第四个阶段为局部变形阶段
低碳钢从受拉至拉断,分为以下四个阶段。
1 弹性阶段
随着荷载的增加,应变随应力成正比增加。如卸去荷载,试件将恢复原状,表现为弹性变形,与A点相对应的应力为弹性极限。在这一范围内,应力与应变的比值为一常量,称为弹性模量,用E表示。弹性模量反映钢材的刚度,是钢材在受力条件下计算结构变形的重要指标。常用低碳钢的弹性模量E=2.0×105~2.1×105MPa,弹性极限E=180~200MPa。
2 屈服阶段
应力与应变不成比例,开始产生塑性变形,应变增加的速度大于应力增长速度,钢材抵抗外力的能力发生“屈服”了。
该阶段在材料万能试验机上表现为指针不动(即使加大送油)或来回窄幅摇动。
钢材受力达屈服点后,变形即迅速发展,尽管尚未破坏但已不能满足使用要求。故设计中一般以屈服点作为强度取值依据。
3 强化阶段
抵抗塑性变形的能力又重新提高,变形发展速度比较快,随着应力的提高而增强。
常用低碳钢的为385~520MPa。抗拉强度不能直接利用,但屈服点与抗拉强度的比值(即屈强比),能反映钢材的安全可靠程度和利用率。屈强比越小,表明材料的安全性和可靠性越高,结构越安全。但屈强比过小,则钢材有效利用率太低,造成浪费。常用碳素钢的屈强比为0.58~0.63,合金钢为0.65~0.75。
4 颈缩阶段
材料变形迅速增大,而应力反而下降。试件在拉断前,于薄弱处截面显著缩小,产生“颈缩现象”,直至断裂。
通过拉伸试验,除能检测钢材屈服强度和抗拉强度等强度指标外,还能检测出钢材的塑性。塑性表示钢材在外力作用下发生塑性变形而不破坏的能力,它是钢材的一个重要性指标。钢材塑性用伸长率或断面收缩率表示。
低碳钢的拉伸大致可分为四个阶段:(1)弹性阶段OA:这一阶段试样的变形完全是弹性的,全部写出荷载后,试样将恢复其原长.此阶段内可以测定材料的弹性模量E. (2)屈服阶段AS’:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内(图中锯齿状线SS’)波动.如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示.若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线. (3)强化阶段S’B 试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长. (4)颈缩阶段和断裂BK 试样伸长到一定程度后,荷载读数反而逐渐降低.此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断.
希望对你有所帮助
第一个阶段为弹性阶段
第二个阶段为屈服阶段
第三个阶段为强化阶段
第四个阶段为局部变形阶段
弹性阶段OA:这一阶段试样的变形完全是弹性的,全部写出荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。
屈服阶段AS’:试样的伸长量急剧地增加,而万能试验机上的荷载读数却在很小范围内(图中锯齿状线SS’)波动。如果略去这种荷载读数的微小波动不计,这一阶段在拉伸图上可用水平线段来表示。若试样经过抛光,则在试样表面将看到大约与轴线成45°方向的条纹,称为滑移线。
强化阶段S’B 试样经过屈服阶段后,若要使其继续伸长,由于材料在塑性变形过程中不断强化,故试样中抗力不断增长。
颈缩阶段和断裂BK 试样伸长到一定程度后,荷载读数反而逐渐降低。此时可以看到试样某一段内横截面面积显著地收缩,出现“颈缩”的现象,一直到试样被拉断