1. 电容器电能的公式
1.电容器所带电量Q与电容器两极间的电压U的比值,叫电容器的电容。在电路学里,给定电容器所带电量Q与电容器两极间的电压U的比值,叫电容器的电容
2.电容的符号是C。电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/UC=εS
3.一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法拉
4.电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联
2. 电容器的电量公式
一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法拉,即:C=Q/U 。
但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
定义式:
电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C
3. 关于电容器的公式
1.计算公式:一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法拉,即:C=Q/U 。但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
2.电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C
3.多电容器并联计算公式:C=C1+C2+C3+…+Cn
4.多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn
5.三电容器串联:C=(C1*C2*C3)/(C1*C2+C2*C3+C*C3)
4. 电容器的电势能公式
电容有关的计算公式 1、一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U
2、但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离, k则是静电力常量。 而常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。)
3、电容器的电势能计算公式:E=CU^2/2=QU/2
4、多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn
5、电容器对于频率高的交流电的阻碍作用就减小,即容抗小,反之电容器对频率低的交流电产生的容抗大;对于同一频率的交流电电.电容器的容量越大,容抗就越小,容量越小,容抗就越大
6、串联分压比:电容越大分的电压越小 并联分流比:电容越大通过电流越大
7、当t= RC时,电容电压=0.63E; 当t= 2RC时,电容电压=0.86E; 当t= 3RC时,电容电压=0.95E; 当t= 4RC时,电容电压=0.98E; 当t= 5RC时,电容电压=0.99E; T单位S R单位欧姆 C单位F
8、T时刻电压:Vt=V0+(V1-V0)*[1-exp(-t/RC)]
5. 怎么算电容器电能公式
电容的储能公式 W=1/2CU²,电感的储能公式 W=1/2 L I²。 由 C=Q/U 得 Q=CU,由电流定义得出 i=dq/dt=Cdu/dt。 因为u是变量,所以瞬时功率为p=ui=Cudu/dt.所做的总功为W=(pt在t从负无穷到t的范围取积分)。
即: w=(Cudu/dt*(dt)在之前说的范围内取积分),得出w=1/2C[u(t)²-u(负无穷时)²]=1/2Cu(t)²。 在时间 dt 内,电源反抗自感电动势所做的功为: dA = - EL * i * dt ,式中 i 为电流强度的瞬时值,EL为: EL = - L * di / dt。 因而 dA = L* i *di,在建立电流的整个过程中,电源反抗自感电动势所做的功为: A = ∫ dA =∫ (0 I) L * i * di = 1/2 * L * I²这部分功以能量的形式储存在线圈内。
当切断电源后,它通过自感电动势作功全部释放出来,即A=W=1/2 L I²。
6. 电容器电容量公式
电池容量(C)的计算方法:容量C=放电电池(恒流)I×放电时间(小时)T电容与电池容量的关系:1伏安时=1瓦时=3600焦耳W=0.5CUU电容的符号是C。C=εS/d=εS/4πkd(真空)=Q/U电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。定义式:电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C
7. 电容器电能公式推导
电容电压的关系,电容电压的计算公式
电容(Capacitance)亦称作“电容量”,是指在给定电位差下的电荷储藏量,记为C,国际单位是法拉(F)。
一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上,造成电荷的累积储存,储存的电荷量则称为电容。
电容是指容纳电场的能力。
任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。一般认为:孤立导体与无穷远处构成电容,导体接地等效于接到无穷远处,并与大地连接成整体。
电容(或称电容量)是表现电容器容纳电荷本领的物理量。
电容从物理学上讲,它是一种静态电荷存储介质,可能电荷会永久存在,这是它的特征,它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、滤波、补偿、充放电、储能、隔直流等电路中。
电容器所带电量Q与电容器两极间的电压U的比值,叫电容器的电容。【电容电压的关系,电容电压的计算公式】
在电路学里,给定电势差,电容器储存电荷的能力,称为电容(capacitance),标记为C。
采用国际单位制,电容的单位是法拉第(farad),标记为F。电工天下
由于法拉这个单位太大,所以常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)等,如果用GSC单位制,电容的单位是静法。
根据电容的定义,电容器两极间的单位电压下储藏的电量叫做电容,电容应该是电量与电压的比值,也就是C=Q/U。
一个电容器,如果带1库仑的电量时两级间的电压是1伏特,这个电容器的电容就是1法拉第,即:C=Q/U 。
但电容的大小不是由Q(带电量)或U(电压)决定的,即电容的决定式为:C=εS/4πkd 。其中,ε是希腊字母,读作epsilon,是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离)。
电容的充放电计算公式
电容充放电时间的计算:
电容充放电时间的计算: 1.L、 元件称为“惯性元件”, C 即电感中的电流、 电容器两端的电压, 都有一定的“电惯性”, 不能突然变化。
充放电时间,不光与 L、C 的容量有关,还与充/放电电路中的电阻 R 有关。
“1UF 电容它的充放电时间是多长?”,不讲电阻,就不能回答。
RC 电路的时间常数:τ=RC 充电时,uc=U×[1-e^(-t/τ)] U 是电源电压 放电时,uc=Uo×e^(-t/τ) Uo 是放电前电容上电压 RL 电路的时间常数:τ=L/R LC 电路接直流,i=Io[1-e^(-t/τ)] Io 是最终稳定电流 LC 电路的短路,i=Io×e^(-t/τ)] Io 是短路前 L 中电流 2. 设 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值;
Vt 为 t 时刻电容上的电压值。
则:
Vt=V0 +(V1-V0)× [1-exp(-t/RC)] 或 t = RC × Ln[(V1 - V0)/(V1 - Vt)] 例如,电压为 E 的电池通过 R 向初值为 0 的电容 C 充电,V0=0,V1=E,故充到 t 时刻电容 上的电压为: Vt=E × [1-exp(-t/RC)]
再如,初始电压为 E 的电容 C 通过 R 放电 , V0=E,V1=0,故放到 t 时刻电容上的电压为: Vt=E × exp(-t/RC)
又如,初值为 1/3Vcc 的电容 C 通过 R 充电,充电终值为 Vcc,问充到 2/3Vcc 需要的时间 是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t=RC × Ln[(1-1/3)/(1-2/3)]=RC × Ln2 =0.693RC
注:以上 exp()表示以 e 为底的指数函数;Ln()是 e 为底的对数函数
3. 提供一个恒流充放电的常用公式:?Vc=I*?t/C. 【电容电压的关系,电容电压的计算公式】
再提供一个电容充电的常用公式: Vc=E(1-e-(t/R*C))。RC 电路充电公式 Vc=E(1-e-(t/R*C))中的:-(t/R*C)是 e 的负指数项 。 关于用于延时的电容用怎么样的电容比较好,不能一概而论,具体情况具体分析。实际电容 附加有并联绝缘电阻,串联引线电感和引线电阻。还有更复杂的模式--引起吸附效应等等。
E 是一个电压源的幅度, 通过一个开关的闭合, 形成一个阶跃信号并通过电阻 R 对电容 C 进行充电。E 也可以是一个幅度从 0V 低电平变化到高电平幅度的连续脉冲信号的高电平幅度。 电容两端电压 Vc 随时间的变化规律为充电公式 Vc=E(1-e-(t/R*C))。
其中的: -(t/R*C) 是 e 的负指数项,这里没能表现出来,需要特别注意。式中的 t 是时间变量,小 e 是自然指 数项。举例来说:当 t=0 时,e 的 0 次方为 1,算出 Vc 等于 0V。符合电容两端电压不能突 变的规律。
对于恒流充放电的常用公式:?Vc=I*?t/C,其出自公式:Vc=Q/C=I*t/C。 电工天下
举例:设 C=1000uF,I 为 1A 电流幅度的恒流源(即:其输出幅度不随输出电压变化)给电容 充电或放电,根据公式可看出,电容电压随时间线性增加或减少,很多三角波或锯齿波就是 这样产生的。根据所设数值与公式可以算出,电容电压的变化速率为 1V/mS。
这表示可以 用 5mS 的时间获得 5V 的电容电压变化;换句话说,已知 Vc 变化了 2V,可推算出,经历 了 2mS 的时间历程。
当然在这个关系式中的 C 和 I 也都可以是变量或参考量。详细情况可 参考相关的教材看看。供参考。
4. 可得: 首先设电容器极板在 t 时刻的电荷量为 q,极板间的电压为 u.,根据回路电压方程:U-u=IR(I 表示电流),又因为 u=q/C,I=dq/dt(这儿的 d 表示微分哦),代入后得到: U-q/C=R*dq/dt, 也就是 Rdq/(U-q/C)=dt,然后两边求不定积分, 并利用初始条件: t=0,q=0 就得到 q=CU 【1-e^ -t/(RC)】这就是电容器极板上的电荷随时间 t 的变化关系函数。
顺便指出,电工学上常把 RC 称为时间常数。
相应地,利用 u=q/C,立即得到极板电压随时间变化的函数, u=U【1-e^ -t/(RC)】。
从得到的公式看,只有当时间 t 趋向无穷大时,极板上的电荷和电压 才达到稳定,充电才算结束。
但在实际问题中,由于 1-e ^-t/(RC)很快趋向 1,故经过很短的一段时间后,电容器极板间电荷和电压的变化已经微乎其微,即使用灵敏度很高的电学仪器也察觉不出来 q 和 u 在微小地变化,所以这时可以认为已达到平衡,充电结束。