一、低压变压器结构图?
变压器结构图解_变压器结构名称及作用
1、铁芯铁芯是变压器最基本的组成部件之一,是变压器的磁路部分,变压器的一、二次绕组都在铁芯上,为提高磁路导磁系数和降低铁芯内涡流损耗,铁芯通常用0.35毫米,表面绝缘的硅钢片制成。
铁芯分铁芯柱和铁轭两部分,铁芯柱上套绕组,铁轭将铁芯连接起来,使之形成闭合磁路。为防止运行中变压器铁芯、夹件、压圈等金属部件感应悬浮电位过高而造成放电,这些部件均需单点接地。
为了方便试验和故障查找,大型变压器一般将铁芯和夹件分别通过两个套管引出接地。2、绕组绕组也是变压器的最基本的部件之一。它是变压器的电路部分,一般用绝缘纸包裹的铜线或者铝线绕成。
接到高压电网的绕组为高压绕组,接到低压电网的绕组为低压绕组。大型电力变压器采用同心式绕组。
它是将高、低压绕组同心地套在铁芯柱上。通常低压绕组靠近铁芯,高压绕组在外侧。这主要是从绝缘要求容易满足和便于引出高压分接开关来考虑的。
变压器高压绕组常采用连续式结构,绕组的盘(饼)和盘(饼)之间有横向油道,起绝缘、冷却、散热作用。3、绝缘材料及结构变压器的绝缘材料主要是电瓷、电工层压木板及绝缘纸板。
变压器绝缘结构分为外绝缘和内绝缘两种:外绝缘指的是油箱外部的绝缘,主要是一次、二次绕组引出线的瓷套管,它构成了相与相之间和相对地的绝缘;内绝缘指的是油箱内部的绝缘,主要是绕组绝缘和内部引线的绝缘以及分接开关的绝缘等。绕组绝缘又可分为主绝缘和纵绝缘两种。
主绝缘指的是绕组与绕组之间、绕组与铁心及油箱之间的绝缘;纵绝缘指的是同一绕组匝间以及层间的绝缘。4、分接开关(调压装置)变压器的调压方式分无载调压和有载调压两种。需停电后才能调整分接头电压的称无载调压;可以带电调整分接头电压的称有载调压。分接开关的作用是:保证电网电压在合理范围内变动。分接开关一般从高压绕组中抽头,因为高压侧电流小,引线截面积及分接开关的接触面可以减小,减少了分接开关的体积。5、油箱油箱是油浸式变压器的外壳,变压器的铁芯和绕组置于油箱内,箱内注满变压器油。
常见油箱有两种类型:5.1、箱式油箱:一般用于中小型变压器。5.2、钟罩式油箱:用于大型变压器。变压器油的作用就是绝缘和冷却。为防止变压器油的老化,必须采取措施,防止油受潮,减少与空气的接触。6、储油柜储油柜也称作油枕,有常规油枕和波纹油枕之分,当变压器油的体积随油温的升降而膨胀或缩小时,油枕就起着储油和补油的作用,以保证油箱内始终充满油。
油枕的体积一般为变压器总油量的8%~10%左右。常规油枕有三种形式:敞开式、隔膜式和胶囊式。
大型变压器为了保证变压器油的性能,防止油的氧化受潮,一般采用隔膜式和胶囊式,以避免油与空气直接接触。油枕上装有油位计,现在一般采用磁力油位计,变压器的油位计和变压器油的温度相对应,用以监视变压器油位的变化。敞开式油枕通常使用玻璃管式的油位计,玻璃管旁边标着刻度,油柜上标着相对应的温度。
现在一般也采用磁力油位计。波纹油枕采用膨胀器的位置指示作为油位指示。7、呼吸器呼吸器又叫吸湿器,由油封、容器、干燥剂组成。
容器内装有干燥剂(如硅胶);当油枕内的空气随着变压器油体积膨胀或缩小时,排出或吸入的空气都经过呼吸器,呼吸器内的干燥剂吸收空气中的水分,对空气起过滤作用,从而保障了油枕内的空气干燥而清洁。
呼吸器内的干燥剂变色超过二分之一时应及时更换。有载开关油枕的呼吸器干燥剂更需及时更换,原因是油枕属敞开式油枕,没有胶囊或者隔膜,呼吸器一旦失去吸潮功能,水分就会直接沿管道进入开关内。波纹油枕没有呼吸器。8、压力释放器(阀)压力释放器装于变压器的顶部。变压器一旦出现故障,油箱内压力增加到一定数值时,压力释放器动作,释放油箱内压力,从而保护了油箱本身。
在压力释放过程中,微动开关动作,发出报警信号,也可使其接通跳闸回路,跳开变压器电源开关。
此时,压力释放器动作,标志杆升起,并突出护盖,表明压力释放器已经动作。当排除故障后,投入运行前,应手动将标志杆和微动开关复归。压力释放器动作压力有15、25、35、55kPa等各种规格,根据变压器设计参数选择9、气体继电器气体继电器也称瓦斯继电器,它是变压器的主要保护装置,安装在变压器油箱与储油柜的连接管上。
有1%-1.5%的倾斜角度,以使气体能流到瓦斯继电器内,当变压器内部故障时,由于油的分解产生的油气流,冲击继电器下挡板,使接点闭合,跳开变压器各侧断路器。
若空气进入变压器或内部有轻微故障时,可使继电器上接点动作,发出预报信号,通知相关人员处理。
瓦斯继电器上部装有试验及恢复按钮和放气阀门。瓦斯继电器上部有引出线,分别接入跳闸保护及信号。瓦斯应有防雨罩,防止进水。瓦斯继电器应定期进行动作和绝缘校验。10、冷却装置变压器运行时产生的铜损、铁损等损耗都会转变成热量,使变压器的有关部分温度升高。变压器的冷却方式有:1、油浸自冷式(ONAN);2、油浸风冷式(ONAF);3、强迫油循环风冷式(OFAF);4、强迫油循环水冷式(OFWF);冷控系统是根据变压器运行时的温度或负荷高低手动或自动控制投入或退出冷却设备,从而使变压器的运行温度控制在安全范围。11、温度计温度计由温包、导管和压力计组成。
将温包安装箱盖上注有油的安装座中,使油的温度能均匀地传到温包,温包中的气体随温度变化而胀缩,产生压力,使压力计指针转动,指示温度。变压器还安装有PT100(铜铂合金)的电阻,该电阻阻值随温度呈线性变化,可以在控制室观察变压器温度。
变压器的温度计除指示变压器上层油温和绕组温度以外,另一个作用是作为控制回路的硬接点启动或退出冷却器、发出温度过高的告警信号。12、绝缘套管变压器绕组的引出线从油箱内穿过油箱盖时,必须经过绝缘套管,以使带电的引出线与接地的油箱绝缘。
绝缘套管一般是瓷制的,它的结构取决于它的电压等级。10kV以下的为单瓷制绝缘套管,瓷套内为空气绝缘或变压器油绝缘,中间穿过一根导电铜杆。110kV及以上电压等级一般采用全密封油浸纸绝缘电容式套管。套管内注有变压器油,不与变压器本体相通。
二、电气试验中做耐压试验的试验变压器有三相的吗?
耐压测试仪可以帮助众多电力工作者更加方便的进行各类电力测试。
一、耐压测试仪用途:
1、用于检测电气设备(如发电机、电机等)的边缘性能,判断是否带电,从而判断被测物体是否带电。
2、对高压电气设备进行预防性试验。
3、对变电站、发电厂等设备的边缘配合间隙进行现场检查。
4、测量各种高低压开关设备和GIS复合装置中断路器各分支或中性点之间的边缘强度。
5、用于电力系统的故障示波器分析。
6、用于电缆线路故障定位,是电缆安全运行的重要工具。
二、耐压测试仪工作原理:
1.当被测物体击穿时,电路中会产生大电流。电流将通过变压器L1流入信号调节器。根据电磁感应定律,在输出端将获得与外加电压值成比例的电压,其大小与流经电路的电流Ia、Ib成正比。
2.信号调节器的输出放大后,附加电压值由显示表指示。
三、耐压测试仪注意事项:
1.仪器应水平放置。若倾斜,应在底部附近抬高30~40mm。
2.为了便于操作,用两只手握住仪器的两侧,这样一只手可以控制电源,另一只手可以调节限位。
3.为防止误操作,当稳压器连接不正确时,不得启动电流调节器。
4.使用过程中,请勿将旋钮转向底部,以免损坏内部零件。
三、三相变压器工作原理及接线图 求大神讲解?
回
四、箱式变压器基本结构图?
一、箱式变压器的结构简介
箱式变压器并不只是变压器,它相当于一个小型变电站,属于配电站,直接向用户提供电源。包括高压室,变压器室,低压室;高压室就是电源侧,一般是35千伏或者10千伏进线,是专门保护变压器的,是集开发研制的集保护、监视、控制、通信等多种功能于一体的电力自动化高新技术产品,是构成智能化箱式变压器的理想电器单元,一个由二十多个标准保护程序构成的保护库,具有对一次设备电压电流模拟量和开关量的完整强大的采集功能。
五、三相隔离变压器和三相自耦变压器的功率?
1、传输功率是一样的,自身容量隔离的要大,也就是为什么隔离比自耦贵的原因;
2、三相自耦变压器10KVA的传输总功率可以达到10KVA,可以带10KVA的负载;
3、三相自耦变压器可以长时间连续工作;
4、带负载是按传输功率来算的,10K的自耦变压器可以带10K的负载。
六、三相伺服变压器和三相隔离变压器的区别?
伺服变压器具有智能控制功能,它可根据伺服变压器输入端的电压信号变化量,控制伺服变压器输出电压的大小,它的输出电压是个变化量。
隔离变压器的输入是个定量,输出变压器的输出电压也是个定量,隔离变压器的输入电压对输出电压没有调节作用。
七、三相自耦变压器原理图
以今天这篇博客文章,我将向您介绍三相自耦变压器的原理图、工作原理以及其在电力系统中的应用。三相自耦变压器是一种常见的电力设备,可用于电力传输和配电系统中。
什么是三相自耦变压器?
三相自耦变压器是一种特殊类型的变压器,它具有三个绕组:一个主绕组和两个副绕组。主绕组和其中一个副绕组是串联在一起的,构成了自耦变压器的自耦同步连接。
自耦变压器的原理是通过磁耦合来实现电能的转换和传递。磁场的变化产生的感应电动势通过绕组之间的耦合传递电能。
三相自耦变压器原理图
下面是三相自耦变压器的原理图:
___ |___|----.----.----. |VP | \ |VP --- |___|---\|___|--- | | === === | | --- |___|---/|___|--- |VN | / |VN |___|----.----.----.上面的原理图显示了三个相互连接的绕组,其中VP表示主绕组的正极,VN表示主绕组的负极。VP和VN之间有两个副绕组,它们也与主绕组相连。
三相自耦变压器的工作原理
三相自耦变压器的工作原理是根据法拉第定律和磁感应定律。当主绕组中的电流变化时,通过磁场的变化,副绕组中会产生感应电动势。
主绕组的电流和副绕组的电流之间存在耦合关系,通过自耦同步连接,电能可以在主绕组和副绕组之间进行传输。因此,三相自耦变压器实际上是将电能从一组绕组传递到另一组绕组的装置。
三相自耦变压器的应用
三相自耦变压器在电力系统中广泛应用,特别是在高电压输电和配电系统中。下面是一些三相自耦变压器的应用场景:
- 电力传输:三相自耦变压器可以用于将高电压输电线路转换为较低电压,以便在城市或工业区域进行配电。
- 配电系统:在大型工业设施和商业建筑中,三相自耦变压器可用于将电网电压转换为适用于设备和机器的低电压。
- 电力调整:三相自耦变压器还可以用于电力系统中的电压调整和电能传输。
- 电力互连:三相自耦变压器可用于不同电力系统之间的电力互连,以实现能源的传输和共享。
总而言之,三相自耦变压器是电力系统中重要的设备,它通过磁耦合实现电能的转换和传输。在电力传输和配电系统中,三相自耦变压器发挥着重要的作用,将高电压转换为低电压,以满足不同区域和设备的需求。
八、三相同步电机的原理结构图?
三相同步发电机原理:当发电机由内燃机驱动至空载转速为额定值附近时,依靠转子铁芯剩磁场,在发电机定子副绕组中的感应电势,经电抗器二次绕组的移相作用,提供建立发电机空载电压的交流励磁电流一电压分量Ifu.又经三相整流桥堆整流后向发电机转子绕组提供空载励磁电流。发电机定子主绕组输出端串接电抗变流器一次绕组后输出三相交流电压,当发电机带上负载后,由于电抗变流器的复励作用,在二次绕组感应一个与发电机负载电流相对应的交流励磁电流分量Ifi璩,因此,有负载时就有两个励磁电流分量叠加,经三相整流向转子绕组提供负载励磁电流。若负载电流增加,电抗变流器一次绕组电流也随着增加,即二次绕组所感应电压随之升高以增加转子励磁电流,反之减小转子励磁电流,从而维持发电机端电压恒定。
九、变压器油枕结构图,变压器内的油有什么作用?
变压器油枕结构图 变压器油的作用: 一是绝缘,二是散热。
变压器 中的油可以增加变压器内部各部件的绝缘强度,因为油是易流动液体,它能够充满变压器内 各部件之间的任何空隙,将空气排除,避免了部件因与空气接触受潮而引起的绝缘降低。其次,因为油的绝缘强度比空气大,从而增加了变压器内各部件之间的绝缘强度,使绕组与绕 组之间、绕组与铁芯之间、绕组与油箱盖之间均保持良好的绝缘。变压器油还可以使变压器的绕组和铁芯得到冷却,因为变压器运行中,绕组与铁芯周围的油受热后,温度升高,体积 膨胀,相对密度减小而上升,经冷却后,再流入油箱的底部,从而形成了油箱的循环。这样,油在不断循环的过程中,将热量传给冷却装置,从而使绕组和铁芯得到冷却。另外,绝 缘油能使木材、纸等绝缘物保持原有的化学和物理性能,使金属(如铜)得到防腐作用,能 熄灭电弧。十、三相变压器与三相铁芯式变压器的异同点?
三相组式变压器和三相芯式变压器都属于三相变压器,那么这两种变压器有哪些区别呢?
1、结构不同:芯式变压器中的铁芯是变压器的磁路部分,在铁芯柱上套绕组,铁轭则将铁芯柱连接起来,形成闭合的磁路;而三相组式变压器是由三个单相变压器在电路上做三相联结而组成的,各相的主磁通沿各自铁芯形成一个单独的回路,彼此间毫无关系。
2、适用范围不同:三相芯式变压器的结构特点是三相的磁路连在一起,每相的磁通都是以另外两相的磁路作为自己的回路。而在大容量的巨型变压器中,为了便于变压器的运输及减少备用容量,常常采用三相组式变压器。
- 相关评论
- 我要评论
-