返回首页

电力电容器组配置的电流速断保护,动作电流

来源:www.xrdq.net   时间:2023-07-15 21:02   点击:123  编辑:admin   手机版

一、电力电容器组配置的电流速断保护,动作电流

三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护。

一段又叫电流速断保护,没有时限,按躲开本段末端最大短路电流整定。

二段又叫限时电流速断,按躲开下级各相邻元件电流速断保护的最大动作范围整定,可以作为本段线路一段的后备保护,比一段多时间t时限。

三段又叫过电流保护,按照躲开本元件最大负荷电流来整定,具有比二段更长的时限,可以作为一二段的后备保护,保护范围最大,时限最长。

拓展资料:

当线路发生短路时,重要特征之一是线路中的电流急剧增大,当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护。

电源的保护功能主要是过压、过流保护两种功能。

任何一种电源在发生故障时,都有可能使输出电压或输出电流失去控制,为了使用户的负载不致因此而损坏,我公司的电源一般都设有过压和过流保护。有些负载如阻性负载,当电源有故障,负载上的电压有可能大幅上升,而电流的上升值不一定能超过过流保护值。

此种情况宜用过压保护,例如工作在50V,可将电压保护值调至55V,如果电源故障只要电压升至55V时,电源会自动切断电压输出。当有些负载是容性负载时,由于大容量的电解电容器并联在一起,当电源发生故障时,

二、电力电容器组成

并联电容器,shunt capacitor,原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。

单相并联电容器主要由心子、外壳和出线结构等几部分组成。用金属箔(作为极板)与绝缘纸或塑料薄膜叠起来一起卷绕,由若干元件、绝缘件和紧固件经过压装而构成电容心子,并浸渍绝缘油。

电容极板的引线经串、并联后引至出线瓷套管下端的出线连接片。电容器的金属外壳内充以绝缘介质油。

三、电力电容器组的作用

380V电容器主要用于电力系统中的功率补偿和无功补偿。它可以提高负载端的功率因数,减小无功损耗,提高电源使用效率。

具体来说,它可以通过补偿电路中的电容器来消除电路中的无功功率,从而提高电路的功率因数,减少电网的无功损耗。

此外,380V电容器还可以提高电力系统的稳定性和可靠性,减少电力设备的负荷损耗。

四、电力电容器组配置的电流速断保护

三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。

一段又叫电流速断保护,没有时限,按躲开本段末端最大短路电流整定二段又叫限时电流速断,按躲开下级各相邻元件电流速断保护的最大动作范围整定,可以作为本段线路一段的后备保护,比一段多时间t时限。三段又叫过电流保护,按照躲开本元件最大负荷电流来整定,具有比二段更长的时限,可以作为一二段的后备保护,保护范围最大,时限最长。

一、电流速断保护(第I段)

当被保护线路的一次侧电流达到起动电流这个数值时,安装在A母线处的保护1就能起动,最后动作于跳>断路器</a>1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流

当被保护线路的一次侧电流达到起动电流这个数值时,安装在B母线处的保护2就能起动,最后动作于跳断路器2。

电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。但由于引入的可靠系数<IMG alt=可靠系统 src=="TANGRAM_15" data-bd-imgshare-binded="1">,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。

二、限时电流速断保护(第II段) </SPAN></P>

<DIV >1、工作原理及整定计算的基本原则<BR>    由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。

由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,

三、定时限过电流保护(第III段)</SPAN><BR>    过电流保护通常是指其起动电流按躲过最大负荷电流来整定的一种保护。它在正常运行时不起动,而在电网发生故障时,则能反应于电流增大而动作,它不仅能保护线路的全长,也能保护相邻线路的全长,以起到后备保护的作用。

由于保护装置的起动和返回是通过电流继电器来实现的,因此,继电器返回电流与起动电流的关系也就代表着保护装置返回电流与起动电流的关系,为此引入继电器的返回系数<IMG alt=参数

保护1位于电网的最末端,只要电动机内部故障,就可以瞬时动作给予切除,t1就是保护装置本身的固有动作时间,对于保护2来讲,为了保证d1点短路时动作的选择性,则应整定其动作时限t2>t1,引入时间阶段△t,则保护2的动作时限为</DIV>。

五、电力电容器组在做冲击合闸试验

  电容器爆炸的可能原因如下:  (1)电容器内部元件击穿:主要是由于制造工艺不良引起的.  (2)电容器对外壳绝缘的损坏。电容器高压侧引出线由薄钢片制成,如果制造工艺不良.边缘不平有毛刺或严重弯折,其尖端容易产生电晕,电晕会使油分解、箱壳膨胀、油面下降而造成击穿。另外,在封盖时,转角处如果烧焊时间过长,将内部绝缘烧伤并产生油污和气体,使电压大大下降而损坏。  (3)密封不良和漏油:由于装配套管密封不良,潮气进入内部,使绝缘电阻降低;或因漏油使油面下降,导致极对壳方向放电或元件击穿。  (4)鼓肚和内部游离:由于内部产生电晕、击穿放电和严重游离,电容器在过电压的作用下,使元件起始游离电压降低到工作电场强度之下,由此引起物理、化学、电气效应,使绝缘加速老化、分解,产生气体,形成恶性循环,使箱壳压力增大,造成箱壁外鼓以至爆炸。  (5)带电荷合闸引起电容器爆炸:任何额定电压的电容器组均禁止带电合闸。电容器组每次重新合闸,必须在开关断开的情况下将电容器放电3min后才能进行,否则合闸瞬间的电压极性可能与电容器上残留电荷的极性相反而引起爆炸。为此,一般规定容量在160kvar以上的电容器组,应装设无压时自动跳闸装置,并规定电容器组的开关不允许装设自动重合闸。  此外,还可能由于温度过高、通风不良、运行电压过高、电压谐波分量过大或操作过电压等原因引起爆炸。  电容器特点  1.它具有充放电特性和阻止直流电流通过,允许交流电流通过的能力。  2.在充电和放电过程中,两极板上的电荷有积累过程,也即电压有建立过程,因此,电容器上的电压不能突变。  电容器的充电:两板分别带等量异种电荷,每个极板带电量的绝对值叫电容器的带电量;电容器的放电:电容器两极正负电荷通过导线中和。在放电过程中导线上有短暂的电流产生。  3.电容器的容抗与频率、容量之间成反比。即分析容抗大小时就得联系信号的频率高低、容量大小 。

顶一下
(0)
0%
踩一下
(0)
0%