1. 10kv接地消弧装置
一般不需要装,中性点经消弧线圈接地的目的是避免单相接地故障时,电弧不能自行熄灭,导致相间短路或烧断导线。消弧线圈又称消弧电抗器或接地故障补偿装置,在电力系统发生接地故障时.补偿电流与所施加的电压成正比。相关规程规定: 35kV 电网中接地电流大于10A 、 6~10kV 电网中接地电流大于30A 、发电机直配网络中接地电流大于5A 时,中性点经消弧线圈接地。
2. 接地消弧变压器
接地变压器的原理是三个铁芯柱上的磁势是一组三相平衡量,相位差 120°,产生的磁通可在三个铁芯柱上互相形成回路,磁路磁阻小,磁通量大,感应电势大,呈现很大的正序、负序阻抗。接地变压器具有正、负序阻抗大而零序阻抗小的作用。
我国的接地变压器通常采用 Z 型接线,为节省投资和变电所空间,通常在接地变压器上增加第三绕组,替代所用变压器,为变电所所用设备供电。根据我国《电抗器》国家标准规定,接地变压器的接地方式可分为直接接地;通过电抗器、电阻及消弧线圈接地。直接接地在我国还没有使用,但己有电力研究部门开始这方面的探讨。
国外的接地变压器通常采用或 Z 型连接,用于 10kV 不接地系统,构成了配电网的接地保护,当系统发生接地故障时,接地变压器对正序、负序电流呈现高阻抗性,对零序电流呈现低阻抗性,使接地保护可靠动作。
扩展资料
按国标对接地变压器的温升有如下规定:
1)额定持续电流下的温升应符合一般电力变压器干式变压器国标中的规定,但主要适用于二次侧经常带负荷的接地变压器;
2)对短时负载电流的持续时间在10s以内时(这种情况主要发生在中性点与电阻联结时),其温升应符合国标电力变压器中对短路条件下的温升限值的规定;
3)接地变压器与消弧线圈一起运行时其温升应符合对消弧线圈温升的规定:
对于持续流过额定电流的绕组温度为80K,主要适用于星性/开口三角形联结的接地变压器;
对于额定电流的最大流通时间规定为2h的绕组,规定温度为100K。这种情况符合多数接地变压器的工作条件。
3. 10kv接地消弧装置 接地时可以靠近吗?
一般情况下,接地电网的单相触电比不接地电网的触电危险性大原因:
1、等位电差小。或变压器离触电位置很远,衰减了电流当在变压器附近的某处用电设备上出触电时候就危险了。
2、在老式的变压器解法中零线和地线是混到一个接线柱之后再人地的。就是所谓的三相四线制,现在三相五线制的情况就不一样了,地线和零线是分开的了。
3、大地也是导体也有电阻,不同地质的电阻率不同,在离变压器远的地方触电就相当于把人的身体串了若干个电阻减流了就没事。扩展资料:电力系统按接地方式分类1、直接接地制式,即将变压器或发电机的中性点直接或通过小电阻与接地装置相连。这种接地制式的系统,当发生单相接地短路时,接地电流很大,所以又叫大电流接地制式。2、不接地制式,即将变压器或发电机的中性点不与接地装置相连或通过保护、测量、信号仪表、消弧线圈以及具有大电阻等接地设备与接地装置相连。这种接地制式的系统,当发生单相接地短路时,接地电流很小,所以又叫小电流接地制式。按接地设备分类1、不经接地设备的接地制式,变压器或发电机的中性点不经任何接地设备直接接地或不接地。2、经电抗或消弧线圈的接地制式,变压器或发电机的中性点通过消弧线圈与接地装置相连。3、经电阻的接地制式,变压器或发电机的中性点通过电阻器与接地装置相连。电阻器为高阻值者称为高电阻接地制式,电阻器为低阻值者称为低电阻接地制式。
4、经电抗补偿、电阻并联的接地制式,变压器或发电机的中性点通过电抗器与电阻器并联接地,其中电抗器宜采用标准规格的消弧线圈。
4. 消弧线圈接地装置
属于非有效接地.
⑴有效接地:包括中性点直接接地和中性点经低电阻接地、小电抗和低阻抗接地。有效接地电网的特征是:在发生单相接地故障时,故障相将通过较大的故障电流,其值最大可超过三相短路的故障电流,此时非故障相的对地稳态电压不超过线间电压的80%,大的故障电流对电气设备要求有高机械强度和高热稳定性。适当增大中性点接地电阻值,可以减少接地时的故障电流,但要保证继电保护的可靠性。
⑵非有效接地:不属于有效接地的接地方式。包括经消弧线圈接地、自动跟踪补偿消弧线圈、高电阻接地、高阻抗接地和中性点不接地。在非有效接地方式中,一相接地时,非故障相上的对地电压一般最高可能达到线间电压的105%,此时单相接地故障电流则较小。
5. 10kv接地变压器消弧线圈成套装置
一般来说,电压互感器一次侧中性点所加的“线圈”,是起消谐作用的,有的称为“单相消谐PT”,是防止一次系统发生“铁磁谐振过电压”的,也就是防止电磁式电压互感器和母线电容(或其它一些电容)发生谐振的;现在多不采用这种方式,而采取PT二次侧加装微机消谐装置的方法;
它和“变压器接消弧线圈”并不是一回事,变压器接消弧线圈是为了防止系统发生单相接地时,接地电容电流太大,在接地点拉弧产生“弧光接地过电压”;二者无论从产生机理,发展的程度,过电压幅值的大小,消除的方法等都不尽相同;但单相接地,可能是发生“铁磁谐振过电压”的激发条件之一;这种接地,不会影响系统的接地方式判断;
在电气试验时,一般多采用元件试验的方式,也就是拆除接线,各元件单独按国家或厂家的元件试验标准值来进行试验;不但绝缘试验如此,特性试验更是这样;如果进行开关柜整体耐压试验,则按开关柜内所接元件最小承受耐压值进行打压。
6. 10kv接地消弧装置基础有多大
按照国标规定10KV系统为小电流接地系统,即中性点不接地系统。当发生单相接地短路故障时,故障相只流过电容电流,数值比较小,只需人工检查维修即可,系统还大约可以运行两小时。但有一点要注意,当经过计算线路若发生故障时,电容电流超过30A,则中性点要经消弧线圈接地,以防止单相短路时间过长而产生电火花烧坏电气设备。
7. 10kv消弧装置作用
1.提供变电站内的生活、生产用电。
2.为变电站内的设备提供交流电,如保护屏、高压开关柜内的储能电机、SF6开关储能、主变有载调机构等,需要操作电源的。
3.为直流系统充电。
定期轮换的目的是防止长期不用容易受潮,如果运行中的损坏,备用的根本用不了,另外如果试验检修就可以调整使用备用站用变。
消弧线圈既不接在高压侧,也不接在低压侧,应该说是接在“本级电压侧”,也就是说,35KV的消弧线圈就接在35KV侧,10KV的消弧线圈就接在10KV侧,6KV的消弧线圈就接在6KV侧;35KV的消弧线圈解决不钉10KV侧的问题。
消弧线圈一般接在电源变压器二次侧中性点上;若电源变压器二次侧绕组为星型接线,则消弧线圈直接接在中性点上;若电源变压器二次侧绕组为角型接线,没有中性点,则消弧线圈不能直接接在中性点上,于是人们发明了“接地变压器”,人为制造出一个“中性点”然后再将消弧线圈接在接地变压器造成的中性点上。
关于把接地点的电容电流弄得小于5A,传统教科书是按消弧线圈上产生的感性电流去抵消故障点处的电容电流,抵消的结果是使总电流小于5A,fengyuxiangsui先生说的比较清楚了;但最近也有一种新的观点,认为补偿的工频电流无论如何也不能抵消接地点的“高频”电流。站变柜的作用是向本站供电用的,只要是主变变出来的是高于380V的(如6000V)。都要安装站用变来保证生产生活的进常进行。
8. 接地消弧线圈成套装置
电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。
我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。
小电阻接地系统在国外应用较为广泛,我国开始部分应用。
1、中性点不接地(绝缘)的三相系统
各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。
这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。
这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。
在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。
二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。
但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。
所以在这种系统中,一般应装设绝缘监视或接地保护装置。
当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。
一相接地系统允许继续运行的时间,最长不得超过2h。
三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。
故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。
2、中性点经消弧线圈接地的三相系统
上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。
为了克服这个缺陷,便出现了经消弧线圈接地的方式。
目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。
消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的。