一、水轮机如何带动发电机转动
水轮机工作水头38.5米,流量141.2m^3/s(1412流量太大,水轮机单机容量大),效率0.92,水轮机出力为49兆瓦。 计算过程: 1)水流出力: Pn=γQH =9.81QH=9.81x141.2x38.5=53329kw 2)水轮机出力: P=Pnηt=53329x0.92=49000kw=49兆瓦 其中: P—水轮机出力; Pn—水流出力; γ—水的重度,取9.81N/m3 ; Q—水流量 Q=Sν=πr2 *ν ; H—单位重量水体的能量(又称水头) ; ηt—水轮机效率。 上述计算的只是水轮机在38.5水头下的额定出力,实际出力随水头、流量的变化而变化。 水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。现代水轮机则大多数安装在水电站内,用来驱动发电机发电。在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。作完功的水则通过尾水管道排向下游。水头越高、流量越大,水轮机的输出功率也就越大。
二、水电站水轮机带动发电机发电
水力发电过程其实就是一个能量转换的过程。
江河水流一泻千里,蕴藏着巨大能量,把天然水能加以开发利用转化为电能,就是水力发电。构成水能的两个基本要素是流量和落差,流量由河流本身决定,直接利用河水的动能利用率会很低,因为不可能在整个河流的截面水布满水轮机。
水力利用主要利用势能,利用势能必须有落差,但河流自然落差一般沿河流逐渐形成,在较短距离内水流自然落差较低,需通过适当的工程措施,人工提高落差,也就是将分散的自然落差集中,形成可利用的水头。
因此在天然的河流上,修建水工建筑物,集中水头,然后通过引水道将高位的水引导到低位置的水轮机,使水能转变为旋转机械能,带动与水轮机同轴的发电机发电,从而实现从水能到电能的转换。发电机发出的电再通过输电线路送往用户,形成整个水力发电到用电的过程。
水力发电的原理与基本类型
常用的集中落差方式有筑坝、引水方式或两者混合方式。
三、水轮机带动发电机发电是什么能量转化
现代发电站有很多种,例如水电站,是流动的水推动水轮机转动带动发电机发电,是机械能转化电能。
火力发电站是化学能转化为机械能,机械能又转化为电能。核电站是核能转化为电能。发电就是通过机械把其它形式的能转化为电能的过程,在转化的过程中总能量保持不变。
四、水轮机带动发电机发电是什么能转化为什么能
答:因为建大坝能提高上游的水位,从可增大水的重力势能,这样水从高处流下后能转化成大的动能。
在坝底安装水轮机,发电机装在水轮机的上面,两轴连在一起。水的动能推动水轮机转动带动发电机发电。一定量的水,水位越高,水的重力势能越大,能发出的电就越多。
五、水轮机带动发电机发电的能量转换情况
势能-机械能-电能。 潮汐发电与普通水利发电原理类似,通过出水库,在涨潮时将海水储存在水库内,以势能的形式保存,然后,在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。
差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。
六、水轮机带动发电机发电是什么能转化成什么能
水力发电是机械能转化为电能的例子。机械能可分为动能和势能,而势能又分为重力势能和弹性势能。
水力发电修拦河坝储水使水有更多的重力势能,当水由上游流下时,水有更多的重力势能转化为水的动能冲击水轮机转动,水轮机带动发电机发电。
七、水轮机 发电机
水机开机操作步骤
1、打开水轮机进水管旁通阀,往机组蜗壳内注水。
2、打开轴承冷却水阀。
3、打开蜗壳排气阀,直到蜗壳内气体排空,关闭排气阀。
4、打开进水电动蝶阀至全开状态。
5、合上调速器电源开关,打开调速器排油阀。
6、将调速器打开手动开关位置,慢慢开启水轮机导水叶机构(调速器手动转盘),使水轮发电机组低速运行一至二分钟,并检查水轮机、发电机声音是否正常,机组是否有振动现象,轴承冷却水是否正常畅通。
7、经以上检查确认机组运转正常后,慢慢增加水轮机调速器转盘,至机组达到额定转速。
8、合上起磁电源开关。
9、将起磁转换开关转回“发电机”位置,后将起磁磁开关向左转动进行起磁(励磁起磁后,将起磁电源开关分开),并使机组电压及频率值与电网基本一致。
10、调速微机励磁控制器(减磁、快速、增磁)按钮,边调整调速器开度,直至发电机电压、频率与电网电压、频率趋向一致。
11、在确定闸刀开关没有合上时,在自动合闸前,应先用手动合上合闸按钮开关,然后用手动分开分闸按钮开关,检查设备是否正常工作状态。
12、在确定安全并网条件下,合上隔离开关,将合闸按钮向左转动,同时按下同期并网装置按钮(有灯亮),直到合闸指示灯亮起。
13、并网合闸成功后,将合闸按钮向右转动,同时按下同期并网装置按钮(灯会熄灭)。
14、将调速器由手动转为液动状态,打开调速器屏膜,按调速器增加、减少按钮,调整发电机水机开度,逐渐增加负荷。
15、将调速器调为自动模式(由手动开关转为自动开关)。
16、采用调速器自动增减负荷,并尽可能使功率因数在滞后运行。
17、合上发电机电压频率监控器开关。
18、检查发电机控制屏上电流、电压、有功、无功功率、功率因数表指示是否正常,并检查有功无功电度表是否正转。
八、水轮机带动发电机发电原理图
水轮机尾水管是水轮机系统中的一部分,其主要作用是引导水轮机排出的尾水,将其导入下游水体或水利工程中。尾水管的工作原理如下:
1. 排水作用:水轮机在转动时,通过叶片的作用将水流加速并转化为机械能。在水轮机转动过程中,其中一部分水流经过叶片作用后被抛出,并形成尾水。尾水管的作用是将这部分尾水排出。
2. 减速作用:尾水管内部通常设置了导流装置,如消能器或扩散器等。这些装置可以将尾水的动能转化为静能,使尾水的速度降低。通过减速作用,可以减少尾水对下游水体的冲击和侵蚀,保护环境和水利工程。
3. 引导作用:尾水管的设计使得尾水能够有效地被引导和排放到目标位置,例如下游河流、水库或引水渠等。它通常具有一定的弯曲或倾斜角度,以适应地形和水利工程的要求,确保尾水能够顺利流出,并达到预期的目标位置。
总的来说,水轮机尾水管通过排水、减速和引导等作用,将水轮机排出的尾水引导到指定位置,以确保水轮机的运行效果和环境保护的需要。具体的工作原理和设计会因水轮机类型、水利工程需求以及地形等因素而有所差异。
九、水轮机带动发电机发电的原理
水电站的发电原理:水的落差在重力作用下形成动能,从河流或水库等高位水源处向低位处引水,利用水的压力或者流速冲击水轮机,使之旋转,从而将水能转化为机械能,然后再由水轮机带动发电机旋转,切割磁力线产生交流电。
水电站一般包括由挡水、泄水建筑物形成的水库和水电站引水系统、发电厂房、机电设备等。水库的高水位水经引水系统流入厂房推动水轮发电机组发出电能,再经升压变压器、开关站和输电线路输入电网。
有些水电站除发电所需的建筑物外,还常有为防洪、灌溉、航运、过木、过鱼等综合利用目的服务的其他建筑物。这些建筑物的综合体称水电站枢纽或水利枢纽。
十、水轮机带动发电机发电原理
水轮发电机并网工作原理:
是指以水轮机为原动机将水能转化为电能的发电机。水流经过水轮机时,将水能转换成机械能,水轮机的转轴又带动发电机的转子,将机械能转换成电能而输出。 水轮发电机由水轮驱动。它的转子短粗,机组的起动、并网所需时间较短,运行调度灵活,除一般发电外,特别宜于作为调峰机组和事故备用机组。