1. 增速型风力发电机组结构设计技术
风力发电大致包括三个部分:
1、原动力,风力
2、发电机
3、变流器并网 其简单过程就是风力带动安装了叶片的发电机旋转,发电机输出与转速对应频率的交流电,变流器将其变为与电网频率相同,电压相等的交流电并网。
用其它原动力带动叶片旋转也是可以发电的,只不过这样,就不能称为风力发电了。
2. 增速型风力发电机组结构设计技术规范
大型风力发电机的叶片转速都为19~30转/分钟的低转速,它的内部有齿轮提速装置,把低速转轴的转速提高50倍,使转速达到1500转/分钟,驱动发电机
3. 风力发电机组的主要技术参数
110kw 发动机型号:6btaa5.9g2 6缸直列 发电机组尺寸:2280×855×1300(长宽高)毫米
200kw 发动机型号:nt855-ga 6缸直列 发电机组尺寸:3000×1060×1900 (长宽高)毫米
500kw 发动机型号:ktaa19g61 6缸直列 发电机组尺寸:3600×1500×2100(长宽高)毫米1000kw 发动机型号:kta50-g3 16缸v型排列 发电机组尺寸:5200×1830×2400(长宽高)毫米
4. 增速型风力发电机组结构设计技术规程
组成风力发电系统的主要部件是塔架、发电机、齿轮增速器(一般为传动效率高的行星齿轮传动)、变桨偏航系统(按风力大小调整桨叶迎风面)、桨叶、联轴器、电控系统等。
风力发电技术采用空气洞力学原理,针对垂直轴旋转的风洞模拟,叶片选用了飞机翼形形状,在风轮旋转时,它不会受到因变形而改变效率等;它用垂直直线4-5个叶片组成,由4角形或5角形形状的轮毂固定、连接叶片的连杆组成的风轮,由风轮带动稀土永磁发电机发电送往控制器进行控制,输配负载所用的电能。
该技术原理根据空气片条理论,实际计算可选取垂直风机旋转轴的切面进行计算模型,按叶片实际尺寸,每个叶片的旋转轴心距离为N米;用CFD技术进行模拟气动系数计算,计算原理采用离散数字方法求解翼形断面的气动力,用网格方法对雷诺数流动涡量分布比较形成高雷诺数下对Navier-Stokes方程进行数字模拟计算的原理结果。
5. 风力发电机组关键技术
风机叶片是风力发电技术进步的关键核心
风力机部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。我国风机叶片行业的发展是伴随着风电产业及风电设备行业的发展而发展起来的。由于起步较晚,我国风机叶片最初主要是依靠进口来满足市场需求的。随着国内企业和科研院所的共同努力,我国风机叶片行业的供给能力迅速提升。我国风机叶片市场已经形成外资企业、民营企业、研究院所、上市公司等多元化的主体投资形式。外资企业主要有GE、LM、GAMESA、VESTAS等,国内企业以时代新材、中材科技、中航惠腾、中复连众为代表。截至到2008年5月,中国境内的风电机组叶片厂商共有31家。其中,已经进入批量生产阶段的公司有10家。2008年,已经批量生产的叶片公司生产能力为460万千瓦。预计2010年,这些叶片公司全部进入批量生产阶段后,综合生产能力将达到900万千瓦。
6. 增速型风力发电机组结构设计技术网盘资源
风力发电的增速机原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电增速器主要用于风力发电机上,具有体积小、承载能力高、使用寿命长、运转平稳、噪音低、温升控制合理。
限速靠减小叶片角度,降低受风力面积达到减速的。
7. 风力发电机组的设计
叶片是风力发电机中最基础和最关键的部件,其良好的设计,可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。在风力发电机中,叶片设计直接影响风能的转换效率,直接影响其年发电量,是风能利用的重要一环。
风力发电机叶片生产制造↓↓↓
大型风力发电机叶片采用的工艺主要有两种,开模手工铺层和闭模真空浸透。常用的是后者,首先把增强材料铺覆在涂覆硅胶的模具上。在先进的现代化工厂,采用专用的铺层机进行铺层,然后真空辅助浸透技术输入基本树脂。固化后的叶片由自动化操纵的设备送到下道工序,进行打磨和抛光等。因为模具上涂有硅胶,叶片大多不再需要涂漆。
风力发电机叶片生产制造的工艺流程。首先磨具清洁到位,开始喷涂胶衣,图层厚度600-800微米,铺设车准备铺设玻璃纤维。铺设完毕放置导注网,盖上真空膜开始抽真空(真空压力一般为85%左右)。然后导入聚酯和硬化剂,等待聚酯和硬化剂完全硬化后,开始结膜,检查缺陷,修理打磨结合面。接着开始和模,在结合面打上连接胶,放入叶片主支架,和模完毕。起模后修理叶片表面胶衣,内部修理,最后配重入库。
风力发电机叶片长期处于恶劣环境中不停的运转,这对叶片提出了更高的要求:叶片密度轻且具有最佳的疲劳强度和力学性能,能经受暴风等极端恶劣条件和随机负载的考验。
叶片的弹性、旋转时的惯性及其振动频率特性曲线都正常,传递给整个发电系统的负载稳定性好,不得在风压的作用下折断,也不得在飞车转速以下范围内产生引起整个风力发电机组的强烈共振;叶片的材料必须保证表面光滑以减小风阻,粗糙的表面亦会被风"撕裂"。(
8. 风力发电机组基本结构
风力发电的基本原理是风的动能通过风轮机转换成机械能, 再带动发电机发电转换成电能。主导的风力发电机组一般为水平轴式风力发电机,它由叶片、轮毂、增速齿轮箱、发电机、主轴、偏航装置、控制系统、塔架等部件所组成。风轮的作用是将风能转换为机械能,它由气动性能优异的叶片装在轮毂上所组成,低速转动的风轮由增速齿轮箱增速后,将动力传递给发电机。 上述这些部件都布置在机舱里,整个机舱由塔架支起。为了有效地利用风能,偏航装置根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对向风。由于齿轮箱是在MW级风力发电机组 中过载和过早损坏率较高的部件,国外开始研 制一种直接驱动型的风力发电机组(亦称:无 齿轮风力发电机),这种机组采用多级异步电 机与叶轮直接连接进行驱动的方式,免去齿轮为了跟踪最佳叶片尖速比,使风电机组在 较大的风速范围内获得最佳功率输出,须对转 速或功率进行调节。常用的调节方式有两种:一种是失速调节,另一种是变桨距调节一即叶片可以绕叶片上的轴转动,改变叶片气动数据,实现功率调节。
风力发电技术
风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。 风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。一般风力发电机的风轮由2个或3个叶片构成。在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。 风力发电机中调向器的功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。一般风力发电机几乎全部是利用尾翼来控制风轮的迎风方向的。尾翼的材料通常采用镀锌薄钢板。 限速安全机构是用来保证风力发电机运行安全的。限速安全机构的设置可以使风力发电机风轮的转速在一定的风速范围内保持基本不变。 塔架是风力发电机的支撑机构,稍大的风力发电机塔架一般采用由角钢或圆钢组成的桁架结构。风力机的输出功率与风速的大小有关。由于自然界的风速是极不稳定的,风力发电机的输出功率也极不稳定。风力发电机发出的电能一般是不能直接用在电器上的,先要储存起来。风力发电机用的蓄电池多为铅酸蓄电池。
风机技术
风机叶片风机叶片是风力发电技术进步的关键核心
风力机部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。我国风机叶片行业的发展是伴随着风电产业及风电设备行业的发展而发展起来的。由于起步较晚,我国风机叶片最初主要是依靠进口来满足市场需求的。随着国内企业和科研院所的共同努力,我国风机叶片行业的供给能力迅速提升。
9. 增速型风力发电机组结构设计技术要求
一、二者的原理不同,
1、直驱式风力发电机是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。
2、半直驱风力发电机采用一级或两级增速齿轮箱,多极同步发电机,全容量变流。此外,为了减轻机舱的重量,半直驱风力发电机组多为紧凑型机型,也就是取消低速轴或将低速轴的长度减小,增速箱输出轴与发电机主轴直联。
二、二者的优势不同
1、直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。
2、半直驱的发电机转速高。这个特点决定了半直驱一方面能够提高齿轮箱的可靠性与使用寿命,同时相对直驱发电机而言,能够兼顾对应的发电机设计,改善大功率直驱发电机设计与制造条件。
三、二者的结构不同,
1、直驱式风力发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。由于齿轮箱是在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机。
2、半直驱概念是在直驱与双馈风电机组在向大型化发展过程中遇到的问题而产生的,兼顾有二者的特点。从结构上说半直驱可与双馈是类似的,具有布局形式多样的特点,同时目前研究中的无主轴结构还具有与直驱相似的外形。
10. 小型风力发电机结构设计
小型风力发电机结构小,重量轻,一般3~5人可以垂直。整个安装主要包括立柱拉索式支架的安装、旋转体的安装、尾翼和手刹车的安装、头部的安装、垂直鼓风机、电气连接等多个技术。
安装过程中不仅要防雷,还要听从统一指挥,在风速不超过4m/s的情况下安装。此外,操作人员不得站在塔下或升起的部件下,以防发生事故,并确保拉索和铆接固定牢固,防止雨水松动。