一、气体保护焊?
是利用气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。气体保护焊分为:
1、非熔化极惰性气体保护焊(TIG)2、熔化极气体保护焊(GMA W)3、CO2气体保护焊4、管状焊丝气体保护焊(FCAW)5、熔化极气体保护焊包括惰性气体保护焊(MIG)6、氧化性混合气体保护焊(MAG)注意事项:1、气体保护焊电流密度大、弧光强、温度高,且在高温电弧和强烈的紫外线作用下产生高浓度有害气体,所以特别要注意通风。
2、引弧所用的高频振荡器会产生一定强度的电磁辐射。
3、弧焊使用的钨极材料中的牡、柿等稀有金属带有放射性,尤其在修磨电极时形成放射性粉尘。
二、二氧化碳气体保护焊立焊怎么焊?
二氧化碳焊接,若采用细丝短路过渡(短弧)焊时,取向下立焊能获得很好的结果。因为在向下焊时,二氧化碳气流也有承托熔池金属的作用,使它不易下坠,而且操作十分方便,焊道成形也很美观,但熔深较浅。此时二氧化碳气流流量应当比平焊时稍大些,焊丝直径<1.6MM时,焊接电流<200A,用于焊接薄板。
如果采用向上立焊,那么会因铁水的重力作用,熔池金属下淌,再加上电弧吹力的作用,溶深将增加,焊道窄而高,故一般不采用这种操作法。若用直径为1.6MM或更大的焊丝,采用滴状过渡而不用短路过渡方式焊接时,可取向上立焊,为了克服溶深大,焊道窄而高的缺点,宜采用横向摆动运丝法,但电流需取下限值,适合用于焊接厚度较大的焊件。
三、二氧化碳气体保护焊?
二氧化碳保护焊与普通电焊有3点不同: 一、两者的定义不同: 1、二氧化碳保护焊的定义:二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。
2、普通电焊的定义:指利用电能,通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子结合的焊接方法。二、两者的操作复杂性不同: 1、二氧化碳保护焊的操作复杂性:在应用方面操作简单,适合自动焊和全方位焊接。在焊接时不能有风,适合室内作业。2、普通电焊的操作复杂性:较复杂,普通电焊的焊接方法根据焊接时加热和加压情况的不同,通常分熔焊、压焊和钎焊三类。三、两者的原理不同: 1、二氧化碳保护焊的原理:二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。2、普通电焊的原理:通过常用的220V或380V电压,通过电焊机里的变压器降低电压,增强电流,并使电能产生巨大的电弧热量融化焊条和钢铁,而焊条熔融使钢铁之间的融合性更高。电弧焊是应用最广泛的焊接方法,包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。因电弧焊使用电源,其产生的高温电弧容易引发火灾爆炸,危险I生较大。来源:-二氧化碳气体保护焊 来源:-二氧化碳保护焊 来源:-电焊四、二氧化碳气体保护焊的气体介质?
【气体保护焊】简称气电焊,是用外加气体来保护电焊及熔池的电弧焊。
【二氧化碳气体保护焊】
①【原理】是利用二氧化碳气体作为保护介质的电弧焊。
②【适用范围】不仅适用于焊接碳钢和合金钢,而且还可适用于磨损零件的堆焊和铸钢件缺陷的补焊。
五、气体保护焊立焊如何焊?
宜采用比平焊较细直径的焊条和较小的焊接电流或火焰;采用短弧焊接,缩短熔滴向熔池过渡的距离;焊接时尽量缩短电弧或火焰对工件加热的时间;正确选择焊条角度;一般是采用由下向上焊,焊薄件时(小于3mm)也可由上向下焊。气保焊的危害:由焊接火花引发的燃
六、co2气体保护焊的干焊伸长要求?
CO2气保护焊接焊丝干伸长 10-12 mm 。
CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。
CO2气保护焊接工艺特点:
1.CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率比焊条电弧焊高1-3倍;
2.CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%-50%;
3.焊缝抗锈能力强,含氢量低,冷裂纹倾向小;
4.焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重;
5.不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施;
6.焊接弧光强,注意弧光辐射。
七、二氧化碳气体保护焊规范?
《气体保护电弧焊用碳钢、低合金钢焊丝GB/T 8110-2008》,本标准规定了气体保护电弧焊用碳钢、低合金钢实心焊丝和填充丝的分类和型号、技术要求、试验方法、检验规则、包装、标志及品质证明书。
本标准适用于熔化极气体保护电弧焊、钨极气体保护电弧焊及等离子弧焊等焊接用碳钢、低合金钢实心焊丝和填充丝。二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。在应用方面操作简单,适合自动焊和全方位焊接。在焊接时不能有风,适合室内作业。原理 二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,进行焊接的方法。(有时采用CO2+Ar的混合气体)。在应用方面操作简单,适合自动焊和全方位焊接。焊接时抗风能力差,适合室内作业。由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。八、二氧化碳气体保护焊时?
CO2气体保护焊机操作规程
CO2气体保护焊机操作规程
1、操作者必须持电焊操作证上岗。
2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置。
3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值。供气开关置于“焊接”位置。
4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压。
5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接。
6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止。
7、焊接完毕后,应及时关闭焊电源,将CO2气源总阀关闭。
8、收回焊把线,及时清理现场。
9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次。
CO2气体保护焊焊接工艺
钢结构二氧化碳气体保护焊工艺规程
1适用范围
本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保
护焊的基本要求。
注:产品有工艺标准按工艺标准执行。
1.1编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》GB.985-88
1.2术语
2.1母材:被焊的材料
2.2焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。
2.3层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。
2.4船形焊:T形、十字形和角接接头处于水平位置进行的焊接.
3焊接准备
3.1按图纸要求进行工艺评定。
3.2材料准备
3.2.1产品钢材和焊接材料应符合设计图样的要求。
3.2.2焊丝应储存在干燥、通风良好的地方,专人保管。
3.2.3焊丝使用前应无油锈。
3.3坡口选择原则
焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。
3.4作业条件
3.4.1当风速超过2m/s时,应停止焊接,或采取防风措施。
3.4.2作业区的相对湿度应小于90%,雨雪天气禁止露天焊接。
4施工工艺
4.1工艺流程
清理焊接部位
检查构件、组装、加工及定位
按工艺文件要求调整焊接工艺参数
按合理的焊接顺序进行焊接
自检、交检焊缝返修
焊缝修磨
合格
交检查员检查
关电源现场清理
4操作工艺
4.1焊接电流和焊接电压的选择
不同直径的焊丝,焊接电流和电弧电压的选择见下表
焊丝直径短路过渡细颗粒过渡
电流(A)电压(V)电流(A)电压(V)
0.850--10018--21
1.070--12018--22
1.290--15019--23160--40025--38
1.6140--20020--24200--50026--40
4.2焊速:半自动焊不超过0.5m/min.
4.3打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边。
4.4不应在焊缝以外的母材上打火、引弧。
4.5定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求。钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度。定位焊焊缝上有气孔和裂纹时,必须清除重焊。
4.9焊接工艺参数见表一和表二
表一:Φ1.2焊丝CO2焊对接工艺参数
接头形式板厚层数焊接电流(A)电弧电压(V)焊丝外伸(mm)焊机速度m/min气体流量L*min装配间隙(mm)
612702712-140.5510-151.0-1.5
621902101930150.25150-1
82120-130130-14026-2728-30150.55201-1.5
102130-140280-30020-3030-33150.55201-1.5
102300-320300-32037-3937-39150.55201-1.5
12310-33032-33150.5201-1.5
163120-140300-340300-34025-2733-3535-37150.4-0.50.3-0.40.2-03201-1.5
164140-160260-280270-290270-29024-2631-3334-3634-36150.2-0.30.33-0.40.5-0.60.4-0.5201-1.5
204120-140300-340300-340300-34025-2733-3533-3533-37150.4-0.50.3-0.40.3-0.40.12-0.15251-1.5
204140-160260-280300-320300-32024-2631-3335-3735-37150.25-0.30.45-0.50.4-0.50.4-0.45201-1.5
表二:Φ1.2焊丝CO2气体保护焊T形接头
接头形式板厚(㎜)焊丝直径(㎜)焊接电流(A)电弧电压(v)焊接速度(m/min)气体流量(L/min)焊角尺寸(㎜)
2.3Φ1.2120200.510-153.0
3.2Φ1.214020.50.510-153.0
4.5Φ1.2160210.4510-154.0
6Φ1.2230230.5510-156.0
12Φ1.2290280.510-157.0
4.9.1控制焊接变形,可采取反变形措施.
4.9.2在约束焊道上施焊,应连续进行,因故中断,再施焊时,应对已焊的焊缝局部做预热处理.
4.9.3采用多层焊时,应将前一道焊缝表面清理干净后,再继续施焊.
4.9.4变形的焊接件,可用机械(冷矫)或在严格控制温度下加热(热矫)的方法,进行矫正.
5交检
6焊接缺陷与防止方法
缺陷形成原因防止措施
焊缝金属裂纹
1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑
夹杂
1.采用多道焊短路电弧2.高的行走速度1.仔细清理渣壳2.减小行走速度,提高电弧电压
气孔
1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度
咬边
1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动
未融合
1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部
未焊透
1.坡口加工不合适2.焊接技术不高3.热输入不合适1.加大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高送丝的速度以获得较大的焊接电流,保持喷嘴与工件的距离合适
飞溅
1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感
蛇行焊道
1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损1.调焊丝伸出长度2.调整矫正机构3.更新导电
CO2气保焊的使用近况CO2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用。尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,CO2气体保护焊以其高生产率(比手工焊高1~3倍)、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一。但是据我们这几年的工作经历,CO2气体保护焊在实际生产运用中还存在不少问题,综合如下:
一、气源的问题
我国现在还没有对焊接用CO2气体纯度要求的国家标准,市场上出售的CO2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷。比对国外多数国家规定,要求焊接用CO2气体纯度不低于99.5%,有些国家甚至要求CO2纯度高于99.8%,水分含量低于0.0066%,来作为获得优质焊缝的前提条件。
二、焊接参数选择的问题
一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制。在施焊操作上,一个熟练的手工电弧焊焊工对掌握CO2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国CO2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能。只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透。要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍(一般在10~20mm范围内),焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等。在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小。
三、焊工操作问题
许多企业在承接任务时,由于市场竞争激烈,产品加工周期短,导致操作工人在操作过程中单纯的“放大”焊接电流来提高生产效率,而操作工艺方法上又不注意,经常会发生液态金属流淌在坡口里或焊缝层间,虽然焊缝外观平整、饱满了,但在焊缝内部可能会形成焊接缺陷——未熔合现象(在焊接质量范畴是不允许存在的缺陷)。而克服这一缺陷的方法是简单的:操作时要始终保持电弧走在液态金属熔池的前面。关键是操作工人意识中对质量的重要性认识不足;一方面,企业要加强对焊工操作技能方面的培训和质量意识的教育,其次,需要企业对焊工技能方面的培训加大投入力度,虽然CO2焊接方法目前普及程度有了很大的发展,而操作技能还有待于进一步提升。
四、焊机的问题
一般用户选择CO2气保焊接设备不外乎厂家推销、朋友推荐、习惯性购买或同类加工结构的设备借鉴等几个途径,作为用户来说,在选购此类焊接设备时,因缺乏比较专业的鉴别人员而常常处于被动的地位。因为使用的CO2气保焊机本身的问题影响焊接质量或增加购买成本,从而提高使用成本的因数可归纳为:
1、在CO2气保焊机的选型上走极端路子,用户不顾自身焊接加工的特点和产品特色,要么一味追求结构较简单的低价位“抽头式”CO2气保焊机,受其焊接参数调节限制影响使用范围;要么购买高价位的,不但增加了前期投入成本,有时因为售后服务跟不上,维修费用高,甚至因定不到个别零部件而使设备报废,使用情况也不尽如人意。
2、国内现CO2气保焊大部分使用短路过渡形式焊接,而短路过渡焊接时对焊接电源的动特性要求很高。有的用户虽购买了新型的CO2气保焊机,但动特性较差,电弧电压、焊接电流、焊接回路电感匹配形成稳定焊接电弧范围狭窄或只有几个稳定点,焊接参数调节时焊接电弧状态变化不明显,提高了焊接参数调节的难度,影响焊接范围和焊接质量。
随着我国宏观经济的持续发展,制造业大幅度需求的递增,市场竞争环境的不断优化,通过加深了解和经验积累,用户通晓CO2气保焊使用特点并以更挑剔的态度对待每个环节必将成为一种趋势。
CO2气体保护焊操作规程
1.准备工作
(1)认真熟悉焊接有关图样,弄清焊接位置和技术要求。
(2)焊前清理。CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物。
(3)检查设备。检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是否正常;极性是否选择正确。
(4)气路检查。CO2气体气路系统包括CO2气瓶、预热器、干燥器、减压阀、电磁气阀、流量计。使用前检查各部连接处是否漏气,CO2气体是否畅通和均匀喷出。
2.安全技术
(1)穿好白色帆布工作服,戴好手套,选用合适的焊接面罩。
(2)要保证有良好的通风条件,特别是在通风不良的小屋内或容器内焊接时,要注意排风和通风,以防CO2气体中毒。通风不良时应戴口罩或防毒面具。
(3)CO2气瓶应远离热源,避免太阳曝晒,严禁对气瓶强烈撞击以免引起爆炸。
(4)焊接现场周围不应存放易燃易爆品。
3.焊接工艺
CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等。在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度。
(1)焊接电流和电弧电压短路过渡焊接时,焊接电流和电弧电压周期性的变化。电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围。
(2)焊丝伸出长度是指导电嘴端面至工件的距离。由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响。生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内。
(3)气体流量小电流时,气体流量通常为5~15L/min;大电流时,气体流量通常为10~20L/min,并不是流量越大保护效果越好。气体流量过大时,由于保护气流的紊流度增大,反而会把外界空气卷入焊接区。
(4)电源极性CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好。
二氧化碳气体保护焊操作禁忌
1、CO2焊不允许用普通H08A焊丝
CO2是一种活泼气体,在电弧高温的作用下分解出原子氧,具有很强的氧化性,能使焊缝中大量的合金元素烧损,同时,还能使飞溅增加,气孔倾向增大。而普通H08A焊丝中仅含有少许的合金元素,无法弥补焊缝中被烧损的合金元素,焊缝的力学性能下降。因此,CO2焊应该选择含有足够的锰和硅等脱元素的焊丝,方能减少金属飞溅,保证焊缝具有较高的力学性能和抗裂性能。
2、焊丝中硅和锰的含量不宜过高
CO2焊常采用Si和Mn联合脱氧,其效果极佳。但是加入焊丝中的Mn和Si元素,由于在焊接中一部分直接氧化和蒸发掉,一部分消耗于FeO的脱氧:还有一部分则留在焊缝中作为补充合金元素,所以要求焊丝要含有足够的Si和Mn,且比例要合适。如果将Si和Mn含量提得过高,则会降低焊缝金属的塑性和冲击韧性,降低焊缝的力学性能.
3、CO2焊不宜采用大颗粒滴状过渡
当焊丝直径大于1.6mm,电流小于400A时,熔滴为大颗粒滴状过渡,其尺寸大小不仅决定于表面张力与重力的平衡。由于CO2气体在高温下分解时,要吸收大量的电弧热量,对电弧有冷却作用,造成电弧收缩,使电弧电场提高,迫使电弧集中在熔滴下部,而熔滴在较大的斑点压力作用下,被迫上挠而形成非轴向过渡,如图2-5所示。这种大颗粒非轴向过渡的熔滴,飞溅很大,电弧不稳定,焊缝成形也较差,因此在实际生产中不宜采用。
有关焊机、操作规程相关信息
九、二氧化碳气体保护焊气体比例多少合适?
二氧化碳气体流量直接影响焊接质量,气体流量太大或太小时,都会造成成形差,飞溅大,产生气孔。一般经验公式是,数量为焊丝直径的十倍,既Φ1.2mm焊丝选择12升/分。当采用大电流快速焊接,或室外焊接及仰焊时,应适当提高气体流量。
十、二氧化碳气体保护焊怎样能焊好?
通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。
由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的刘质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。扩展资料优点介绍1.焊接成本低。
其成本只有埋弧焊、焊条电弧焊的40~50%。
2.生产效率高。
其生产率是焊条电弧焊的1~4倍。
3.操作简便。
明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4.焊缝抗裂性能高。
焊缝低氢且含氮量也较少。
5.焊后变形较小。
角变形为千分之五,不平度只有千分之三。
6.焊接飞溅小。
当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。
- 相关评论
- 我要评论
-