一、样本容量公式?
样本容量公式是N=Z2×(P ×(1-P))/E2,样本容量又称"样本数",指一个样本的必要抽样单位数目。在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。一般来说,样本容量主要由精确度、同质性、财力、抽样类型、分析类别等因素决定。在抽样调查中,样本容量的确定很重要。。
二、总体,个体,样本,样本容量怎样区分?
总体 (population) :在某种共性基础上由许多个别事物结合起来的整体。
根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种共同性质的许多个别事物构成的整体。
表示考察对象的全体。又称母体。总体中每个成员称为个体。例如考察某厂生产的灯泡的使用寿命,该厂生产的所有灯泡为总体,每个灯泡为一个个体。当总体中所含个体总数是有限时,称为有限总体,否则,称为无限总体。在实际中全面了解总体的情况,往往难以办到,如不可能对所有灯泡进行试验,记录每一个灯泡的使用寿命。所以常通过观测部分个体,以获得总体的信息。
总体单位:构成总体的所有个体。
组成总体的每一个考察对象称为个体。
研究中实际观测或调查的一部分个体称为样本,研究对象的全部称为总体。如作水质检验时从井水或河水中采的水样,临床化验中从病人身上采的血液或其它活体组织标本,是样本;而整个一口井或一条河的某一段所有的水,某病人全身所有的血液或某个组织器官,则是总体。这类总体是具体存在的,但另有些总体却是假想的,只是理论上存在的一个范围。例如试验某一治疗流感新药的疗效,最初接受治疗的一批流感患者,不论数量多少,都只是一个样本。若该药疗效得到肯定,从而加以推广,那么此后凡在相同条件下接受该药治疗的所有流感患者,都属于这个总体。可是当初试用时,这个总体还并不存在,是假想的。
样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。 样本容量的大小涉及到调研中所要包括的单元数。
样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样。
三、样本容量等于什么?
1、样本容量是指一个样本中所包含的单位数,一般用n 表示,它是抽样推断中非常重要的概念。样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
2、样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
3、在假设检验里样本容量越大越好。但实际上不可能无穷大,就像研究中国人的身高不可能把所有中国人的身高全部测量一次一样。
四、样本容量代表什么?
又称“样本大小”,在一个样本中所包含的个案或单元数。一般来说,样本容量主要由精确度、同质性、财力、抽样类型、分析类别等因素决定。在抽样调查中,样本容量的确定很重要。因为样本容量太大,会造成人力、物力和财力的很大浪费;样本容量太小,会使抽样误差太大,使调查结果与实际情况相差很大,影响调查的效果。
五、样本数量和样本容量什么区别?
一、指代不同
1、样本数量:总体中抽取的样本元素的总个数。
2、样本容量:一个样本中所包含的单位数,用n 表示,它是抽样推断中非常重要的概念。
二、特性不同
1、样本数量:在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
2、样本容量:样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
三、应用不同
1、样本数量:应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。
2、样本容量:样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
六、样本与样本容量的区别?举个例子?
样本是观测或调查的一部分个体,总体是研究对象的全部。总体中抽取的所要考查的元素总称,样本中个体的多少叫样本容量。样本容量又称“样本数”。指一个样本的必要抽样单位数目。
样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
七、总体,个体,样本,样本容量的概念是什么?
总体是指考察的对象的全体, 个体是总体中的每一个考察的对象, 样本是总体中所抽取的一部分个体, 而样本容量则是指样本中个体的数目. 我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
八、初中数学样本容量和样本的区别?
答案:样本是从总体中抽取一部分个体,样本容量是样本中个体的数目。比如要考察某中学初二年级的学生身高,从初二年级中选取100名学生。那么样本是这100名学生的身高,样本容量是100。注意样本容量没有单位。
延伸:用样本的特征来估计总体的特征。
九、总体、个体、样本和样本容量分别指什么?
总体 (population) :在某种共性基础上由许多个别事物结合起来的整体。
根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种共同性质的许多个别事物构成的整体。
表示考察对象的全体。又称母体。总体中每个成员称为个体。例如考察某厂生产的灯泡的使用寿命,该厂生产的所有灯泡为总体,每个灯泡为一个个体。当总体中所含个体总数是有限时,称为有限总体,否则,称为无限总体。在实际中全面了解总体的情况,往往难以办到,如不可能对所有灯泡进行试验,记录每一个灯泡的使用寿命。所以常通过观测部分个体,以获得总体的信息。
总体单位:构成总体的所有个体。
组成总体的每一个考察对象称为个体。 研究中实际观测或调查的一部分个体称为样本,研究对象的全部称为总体。如作水质检验时从井水或河水中采的水样,临床化验中从病人身上采的血液或其它活体组织标本,是样本;而整个一口井或一条河的某一段所有的水,某病人全身所有的血液或某个组织器官,则是总体。这类总体是具体存在的,但另有些总体却是假想的,只是理论上存在的一个范围。例如试验某一治疗流感新药的疗效,最初接受治疗的一批流感患者,不论数量多少,都只是一个样本。若该药疗效得到肯定,从而加以推广,那么此后凡在相同条件下接受该药治疗的所有流感患者,都属于这个总体。可是当初试用时,这个总体还并不存在,是假想的。
样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。 样本容量的大小涉及到调研中所要包括的单元数。
样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样。
十、样本量与样本容量有什么区别?
一、指代不同
1、样本量:总体中抽取的样本元素的总个数。
2、样本容量:一个样本中所包含的单位数,用n 表示,它是抽样推断中非常重要的概念。
二、特性不同
1、样本量:在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
2、样本容量:样本容量的大小与推断估计的准确性有着直接的联系,即在总体既定的情况下,样本容量越大其统计估计量的代表性误差就越小,反之,样本容量越小其估计误差也就越大。
三、应用不同
1、样本量:应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。
2、样本容量:样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
- 相关评论
- 我要评论
-