返回首页

开关电源基本拓扑(开关电源基本拓扑结构图)

来源:www.xrdq.net   时间:2023-01-19 17:18   点击:196  编辑:admin   手机版

1. 开关电源基本拓扑结构图

1. 传统变压器通过同时穿过原、副变线圈的磁场进行耦合,线圈可以看成多个包围磁感线的单匝线圈串联,从而通过原、副线圈的匝数变比控制电压输出。由于受限于磁性材料的饱和特性,一般传统变压器多用于交流电的变换,使磁芯工作在膝点内,保证较高的转换效率。

2. 开关电源通过控制电路中的电子开关的开闭来实现可控的电路拓扑变化,配合利用电感电容存储、释放能量来实现输出变换。开关电源主要可以分为AC-AC,AC-DC,DC-AC和DC-DC,能够实现各种变换。 以DC-DC为例:Buck电路可以实现降压,它的原理可以理解为,通过控制一个周期中电容充放电的时间比例来控制电场能量的储存和释放的时间比例,从而控制输出电压,可以感性地理解为,电源向电容充电,使电场能量增加,电容电压升高,然后在合适地时候通过开关动作,改变电路结构,使电容向负载释放电场能量,电容电压降低,然后又开始充电、放电······; Boost电路可以实现升压,它利用电感存储磁场能量,也是通过一个周期中对电感充、放电时间的比例来控制磁场能量的储存与释放,可以感性地理解为在一个周期中花了好久向电感中注入能量,使电感电流不断变大,达到合适的程度后再通过开关改变电路结构,使电流迅速减小,产生很高的电压,磁场能量释放。接着又开始下一个攒大招的周期······只要上述的周期够短(实际上电力电子开关可以做到),就可以使输出的波动被控制在令人满意的范围内。

3. 实际电路中常常是电力电子器件与磁偶变压器配合使用。由于开关电路可以实现很高的开关频率,输出很高频率的波形,减小了对后面变压器膝点磁通大小的要求,这使得高频变压器的体积、重量相较传统变压器得以大大减小。 电力电子专业的筒子们就是不断地在控制策略和电路拓扑中寻求更稳定更高效的变换方式。 电力电子就像一个超快速稳定的剪刀手,对波形进行各种剪切粘贴,形态各异、设计巧妙的电路拓扑实现各种波形变换······ 可惜答主以后读研不在电力电子方向了,但真的觉得电力电子蛮有意思.....大四狗答案仅供参考,欢迎指正!

2. 常用电源拓扑结构

应当是电路拓扑。

这里的拓扑是指电路的连接关系,或组成电路的各个电子元件相互之间的连接关系。

3. 开关电源拓扑结构详解

计算机网络的拓扑结构指网络节点和链路之间的分布和互连形成的物理形状。

一: 星形拓扑结构:一种以中央节点为中心,把若干外围节点连接起来的辐射状互联结构。

二:环形拓扑结构:所有网络节点通过通信链路连接成一个闭合环,每个节点能够接受从一段链路传来的数据,并把该数据沿环送到另一端链路上。

三:  总线拓扑结构:采用一个共享信道作为传输介质,所有结点都通过相应的硬件接口直接连到被称为总线的传输介质上。

四: 树形拓扑结构:

顶端是根结点,根节点下有分支,每个分支还可再带子分支。

根节点接收各网络结点发送的数据,然后再广播发送到全网。

五:  网形拓扑结构:各网络节点之间根据需要将通信线路互连,形成网状。

4. 开关电源基本拓扑结构图解

    半桥电路处于连续工作模式时,在一个开关周期内经历四种开关状态,其中状态2和状态4是相同的。为半桥电路连续电流模式波形: 状态一:t0~t1,S1导通,S2断开,这时电容C1给变压器充能,形成从变压器原边同名端流入的电流。

   依据楞次定律,变压器副边会产生从同名端流出的电流来阻碍磁通增加,此时上绕组的二极管VD1导通,形成回路:上绕组N2→二极管VD1→电感L→负载R。

5. 开关电源主要有哪些拓扑

。通常电子开关由信号控制,或由相关程序控制的电路通断动作,称做软开关。硬开关,多指机械类结构,有触点接触型的电路开关器件,即由外力控制通断动作。

6. 开关电源的结构图

开关电源的特性就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.如果不将50HZ变为高频那开关电源就没有意义

电源适配器的特性是:电源转换器(既AC转DC),由交流电转换为直流电,再经过电脑,它是不能保护电脑的,但电脑里面有储存电源的储存器(也叫充电器),所以在停电的时候可以保护电脑。

开关电源与适配器都是开关电源,都由高频开关管及其控制电路组成。而适配器电源则是一种稳压开关电源,开关电源充电器则带有浮充功能,电压是随电流的变小而变大,到最后是只有电压而没电流。

顶一下
(0)
0%
踩一下
(0)
0%