1. 智能电容补偿装置
1、 电源安装接线不规范
新购置的低压无功补偿装置柜,由于生产厂家的不同,在安装电源线的接线方法上也不相同,主要与厂家在低压无功补偿装置柜上配置的无功功率自动补偿控制器JKG系列(简称:控制器)的取样检 测信号电源有关,有的仪器的取样电流和取样电压要同相,有的是不要求同相。
2、取样检测信号倍率选择不当
取样用的电流互感器,有的选择的CT倍率过大,使得控制器的取样的二次电流过小,处于"欠流"指示状态,有的选择的CT倍率过小,使得控制器的取样的二次电流过大,控制器的取样检测信号电流一般不超过5A,否则就会烧坏控制器的塑料接线端子和内部原件。
3、电容器的额定电压偏低
2000年之前生产的低电压并联电容器的额定电压大多数是400V,而随着农网改造和电能质量的不断提高,目前,电网电压特别是配电变压器的首端,电源电压一般都要超过400V,有的达420V左右。而低压无功补偿装置柜都是安装在配电变压器低压线母线侧,处于电源的最前端,此时,电容器长期在高于其额定电压状态下运行,缩短了寿命。
4、电容器的容量和组数配置不当
生产厂家为了产品的统一规范,补偿装置柜里安装的电容器都是统一容量,如10KVAR×12组、12KVAR×10组、14KVAR×8组等。而现场实际工作中,控制器设定的功率因数投入门限值是0.95(0.90-1.0可调),它根据用电负荷的功率因数自动投切电容器组数,假设在12KVAR×10组当中,当负荷的功率因数低于0.90时,控制器就发出指令投入电容器,而当投入了6组电容器后,又超出了控制器设定的限值0.95,此时,控制器又要发出指令退出2组电容器,当退出后又达不到所要求的功率因值,控制器又要发出指令投入电容器,如此反复,造成频繁投切,损坏电器设备。
5、补偿装置柜的外壳接地不重视
每张补偿装置柜里都安装有三只过压保护用的避雷器 (FYS-0.22),有的厂家是将避雷器的接地端与柜体外壳直接相连,有的是单独引线接地,当有雷电波或过电压侵入时,此时的避雷器的接地就成了工作接地。有的柜体外壳根本就没接地或接地电阻达不到要求,造成很多避雷器泄放电流不畅而爆炸损坏,使得补偿装置柜外壳带电。
6、低压无功补偿装置柜要配置无功计量装置
目前,普遍的生产厂家在装配补偿装置柜(低压配电柜)时,都没有安装无功计量表计,工作人员只能从控制器的显示器上读取实时的低压功率因数值,不能掌握到月、年的平均功率因数值。
7、思想认识问题
一些工作人员认为,在配电变压器端安装低压无功电容补偿装置柜会增加台区的低压线损,对他们没利。所以有很多的电容柜人为的不去投运,有时一张柜上坏一个很小的零配件就将整柜退出,造成大量的电容柜闲置。
2. 智能电容补偿装置原理
电压补偿也是,功率因数的补偿。、无功补偿的原理 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 无功补偿的意义 (1)补偿无功功率,可以增加电网中有功功率的比例常。 (2)减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资。
3. 智能电容补偿装置工作原理
低压电容补偿柜使用方法如下:用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。
当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。
电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。
电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。
补偿原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量。而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。
这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理。低压电容补偿柜的原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。
这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿。
4. 智能电容补偿装置报警电压谐波保护怎么处理
根据电网的谐波参数来选用电抗值,如果电网的3次谐波较大,那么就必须选用电抗率为12%的电抗器,也即电抗器容量=12%*电容器容量。
如果三次谐波很小,有五次以上的谐波,那么电抗器的电抗率可以选用6%~7%的,如果谐波很小,那么可以采用0.1~1%左右的电抗器(也就是常用的空心的小电抗器)来抑制投切涌流即可。
5. 智能电容补偿装置安装原则
电容补偿一般采用就地补偿和集中补偿两种方式。就地补偿就是根据具体设备计算合适的电容器连接到设备的接电端子上,随着设备的开启和停止投入和切除电容器。
集中补偿就是设置电容补偿柜,自动检测配电系统的功率因数并控制所需电容器组的投入或切除。
6. 智能电容补偿装置图片
电容补偿柜的控制器需要电压电流信号,这样才能检测系统需要的无功功率大小,这样首先要设置电压和电流的互感器变比,然后设置一些保护参数,比如过电压倍数,过电流倍数,最后需要设置电容器组的投切门限。
7. 智能电容补偿装置三相电流不平衡
三相智能表出现电流反向解决方法:
(1)属于联络线路两侧计量的电能表,应选用带止逆器有功和无功电能表,采用正反表的安装方法。
(2)在10kV及以上电压等级运行的计量装置,应加装电压失压计时仪,及时发现电能表缺相电压运行的故障,并为电量的追补提供依据。
(3)三相四线供电线路应力求做好负荷平衡,加强用户侧力率补偿装置的巡查,及时排除电容故障,使电能表长期在常规状态下运行。