一、数字万用表怎么测量可控硅的好坏?
你好,使用数字万用表检查可控硅 数字万用表拨至二极管挡,红表笔接某一电极,黑表笔分别 接触另外两个电极。如果其中有一次显示电压为零点几伏, 则此时红表笔接的是控制极G,黑表笔接的是阴极K,余下 的则是阳极A。谢谢
二、怎么用数字万用表表测量可控硅好坏?
你好,
数字万用表拨至二极管挡,红表笔接某一电极,黑表笔分别 接触另外两个电极。如果其中有一次显示电压为零点几伏, 则此时红表笔接的是控制极G,黑表笔接的是阴极K,余下 的则是阳极A。假如两次都显示溢出,说明红表笔接的不是 控制极,需更换电极重测。
测试可控硅的触发能力数字万用 PNP挡,此时 hFE 插口上的两个 带负电,电压为2.8V。可控硅的三个电极各用一根导线引出,阳极A、阴极K 引线分别插人E 孔,控制极G悬空。 此时可控硅关断,阳极电流为零,将显示 000。把控制极 插人另一个E孔。
显示值将从000 开始迅速增加,直到显示 溢出符号后,立即又变成 000,然后再次从 000 变到溢出, 这样周而复始。采用此法可确定可控硅的触发是否可靠。但 这样的测试由于电流较大,应尽量缩短测试时间。必要时也可在可控硅的阳极上串一只几百欧的保护电阻。如果使用 NPN 挡,可控硅阳极A 应接C 孔,阴极K 孔,以保证所加的是正向电压。
谢谢
三、怎么用万用表测量可控硅?
1.首先将万用表打到直流或者交流电压档
2.然后确认测量电路电压量程大概范围
3.将表笔测量元器件接线端或者焊接的两端进行读取电压数据。
万用表测交流电压时要打到ACV(~V)档位,测直流电压时要打到DCV(-V)档位。
如果被测电压不知其大小,应从高档位逐步向底档位调试。电压的符号是用 V 来表示的。
万用表使用注意事项:
1、在使用万用表之前,应先进行“机械调零”,即在没有被测电量时 ,使万用表指针指在零电压或零电流的位置上。
2、在使用万用表过程中,不能用手去接触表笔的金属部分 ,这样一方面可以保证测量的准确,另一方面也可以保证人身安全。
3、在测量某一电量时,不能在测量的同时换档,尤其是在测量高电压或大电流时 ,更应注意。否则,会使万用表毁坏。如需换档,应先断开表笔,换档后再去测量。
4、万用表在使用时,必须水平放置,以免造成误差。同时, 还要注意到避免外界磁场对万用表的影响。
5、万用表使用完毕,应将转换开关置于交流电压的最大档。如果长期不使用 ,还应将万用表内部的电池取出来,以免电池腐蚀表内其它器件。
希望能帮到你,谢谢
四、bt152可控硅用万用表怎样测量好坏测量?
测量BT152可控硅的好坏,可以采用以下步骤:
将万用表调至二极管测试档位,将黑色测试笔连接到BT152的阴极(K),红色测试笔连接到BT152的阳极(A)。
测量BT152的正向电压,应该在0.6V以下。
将万用表调至电阻测试档位,将黑色测试笔连接到BT152的阴极(K),红色测试笔连接到BT152的控制端(G)。
测量BT152的控制电阻,应该在几千欧姆至几百千欧姆之间。
将BT152接入电路,通过控制端(G)施加控制信号,检查BT152是否正常导通和断开。
以上是测量BT152可控硅的基本步骤,需要注意的是,在测量前需要确保BT152已经从电路中拆下,并且在测量过程中要注意测试笔的连接正确,以避免误操作导致电路损坏。
五、双向可控硅用数字万用表如何测试(指针表的测量请勿介绍)?
将3至6伏的电源正极,10至20欧电阻,SCR阳极,阴极,电源负极串联起来,再用一个680欧的电阻并在电源正极,并用电阻的另一端对碰触SCR的控制极(正触发)。然后用数字表的电压档测SCR阳极与阴极间的电压降,如果正常触发,电压降很小。 。。然后将电源断开一下,重新接好,(不触发)。这时阳极与阴极间的电压应很大(接近电源电压)。。。
据此,你也可以测试(正负)触发电流的大小。。。维持电流的大小。。。
当然,也可以将数字表的电流档串在电路中。 。。
。
六、数字万用表怎样测量6?
mcr22-6是可控硅,也就是晶闸管。 简单检测方法:
1.万用表旋至欧姆档R*1K,测量阳极和阴极间的正、反向电阻,其值均应在几百千欧以上,若电阻小,则管是坏的。
2.同样的档位下,测量门极和阳极间的正反向电阻,其值均应在几百千欧以上,若电阻小,则管是坏的。
3.万用表置欧姆档R*10,黑表笔接阳极(内电源正极),红表笔接阴极(内电源负极),此时晶闸管阳极和阴极间加上正向电压,但晶闸管并不导通,表针指示(倒着的‘8’)处。然后将门极和黑表笔接触,此时表指针摆动,晶闸管导通(相当于门极加触发电压)。之后,若将门极和黑笔脱开,表指针不转回8处(晶闸管维持导通),这说明此晶闸管是好的,只有数字式万用表的话测前两项就好了,不过数字式万用表的电阻档量程比指针式小很多。
七、数字万用表怎样测量频率?
测量频率时,将量程开关置于“Hz”挡。测量时,将红表笔插入“V.V’插口,将黑表笔插入“COM”插口,将红、黑表笔并接被测信号源的两端。
数字万用表,一种多用途电子测量仪器,一般包含安培计、电压表、欧姆计等功能,有时也称为万用计、多用计、多用电表,或三用电表。
数字万用表有用于基本故障诊断的便携式装置,也有放置在工作台的装置,有的分辨率可以达到七、八位。
数字多用表(DMM)就是在电气测量中要用到的电子仪器。它可以有很多特殊功能,但主要功能就是对电压、电阻和电流进行测量,数字多用表,作为现代化的多用途电子测量仪器,主要用于物理、电气、电子等测量领域。
【分辨率】
分辨率是指一块表测量结果的好坏。了解一块表的分辨率,你就可以知道是否可以看到被测量信号的微小变化。例如,如果数字多用表在4V范围内的分辨率是1mV,那么在测量1V的信号时,你就可以看到1mV(1/1000伏特)的微小变化
如果你要测量小于1/4英寸(或1毫米)的长度,你肯定不会用最小单位为英寸(或厘米)的尺子。如果温度为98.6°F,那么用只有整数标记的温度计测量是没用的。你需要一块分辨率为0.1°F的温度表。
位数、字就是用来描述表的分辨率的。数字多用表是按它们可以显示的位数和字分类的。
一个3位半的表,可以显示三个从0到9的全数字位,和一个半位(只显示1或没有显示)。一块3位半的数字表可以达到1999字的分辨率。一块4位半的数字表可以达到19999字的分辨率。
用字来描述数字表的分辨率比用位描述好,3位半数字表的分辨率已经提高到3200或4000字。
3200字的数字表为某些测量提供了更好的分辨率。例如,一个1999字的表,在测量大于200V的电压时,你不可能显示到0.1V。而3200字的数字表在测320伏特的电压时,仍可显示到0.1V。当被测电压高于320V,而又要达到0.1V的分辨率时,就要用价格贵一些的20000字的数字表。
【精度】
精度就是指在特定的使用环境下,出现的最大允许误差。换句话说,精度就是用来表明
数字多用表的测量值与被测信号的实际值的接近程度。
对于数字多用表来说,精度通常使用读数的百分数表示。例如,1%的读数精度的含义是:数字多用表的显示是100.0V时,实际的电压可能会在99.0V~101.0V之间。
在详细说明书中可能会有特定数值加到基本精度中。它的含义就是,对显示的最右端进行变换要加的字数。在前面的例子中,精度可能会标为±(1%+2)。因此,如果GMM的读数是100.0V,实际的电压会在98.8V~101.2V之间。
模拟表的精度是按全量程的误差来计算的,而不是按显示的读数来计算。模拟表的典型精度是全量程的±2%或±3%。数字多用表的典型基本精度在读数的±(0.7%+1)和±(0.1%+1)之间,甚至更高。
八、数字万用表怎么测量电流?
1.断开电路;
2.黑表笔插入com端口,红表笔插入mA或者20A端口;
3.功能旋转开关打至A~(交流),A-(直流),并选择合适 的量程;
4.断开被测线路,将数字万用表串联入被测 线路中,被测线路中电流从一端流入红表笔, 经万用表黑表笔流出,再流入被测线路中;
5.接通电路;
6.读出显示屏数字。
数字万用表测量电流的原理
数字万用表测量电流的基本原理是利用了欧姆定理:I=U/R。数字式万用表的有多个电流档位,对应多个取样电阻,测量时,将万用表串联接在被测电路中,选择对应的档位,流过的电流在取样电阻上会产生电压,将此电压值送入A/D模数转换芯片,由模拟量转换成数字量,再通过电子计数器计数,最后将数值显示在屏幕上。万用表的内部有串联采样电阻。万用表串入待测电路,就会有电流流过采样电阻,电流流过会在电阻两端形成电压差,通过ADC检测到电压转换成数值,再通过欧姆定律把电压值换算成电流值,通过液晶屏显示出来。
九、数字万用表测量小容量电容,该怎么测量?
小容量的电容用数字表不太好测量(表和表笔会有分步电容等因素影响,造成误差大),特别是几皮法的。可采取并联的办法测量:先测量出一个100皮法的电容,然后将要测量的小电容与它并联一块测量,将读数减去100皮法,就是小电容的测量数值。 万用表又称为复用表、多用表、三用表、繁用表等,是电力电子等部门不可缺少的测量仪表,一般以测量电压、电流和电阻为主要目的。万用表按显示方式分为指针万用表和数字万用表。万用表是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)等。万用表不仅可以用来测量被测量物体的电阻,交直流电压还可以测量直流电压。甚至有的万用表还可以测量晶体管的主要参数以及电容器的电容量等。充分熟练掌握万用表的使用方法是电子技术的最基本技能之一。
十、怎样测量可控硅?
1. 可控硅的特性。
可控硅分单向可控硅、双向可控硅。
单向可控硅有阳极A、阴极K、控制极G三个引出脚。
双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。
只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。
此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。
单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。
只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。
单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。
单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。
双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。
此时A1、A2间压降也约为1V。
双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。
只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。
2. 单向可控硅的检测。
万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。
此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。
此时万用表指针应不动。
用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。
如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。
3. 双向可控硅的检测。
用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。
若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。
确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。
将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。
再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。
随后断开A2、G间短接线,万用表读数应保持10欧姆左右。
互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。
同样万用表指针应不发生偏转,阻值为无穷大。
用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A2间的阻值也是10欧姆左右。
随后断开A2、G极间短接线,万用表读数应不变,保持在10欧姆左右。
符合以上规律,说明被测双向可控硅未损坏且三个引脚极性判断正确。
检测较大功率可控硅时,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。
晶闸管(可控硅)的管脚判别 晶闸管管脚的判别可用下述方法: 先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。
再将万用表置于R*10K挡,用手指捏住阳极和另一脚,且不让两脚接触,黑表笔接阳极,红表笔接剩下的一脚,如表针向右摆动,说明红表笔所接为阴极,不摆动则为控制极。