1. 测量仪器检测
测量系统分析(MSA) 在日常生产中,我们经常根据获得的过程加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化;那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。 测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征。偏倚指测量数据相对于标准值的位置,包括测量系统的偏倚(Bias)、线性(Linearity)和稳定性(Stability);而方差指测量数据的分散程度,也称为测量系统的R&R,包括测量系统的重复性(Repeatability)和再现性(Reproducibility)。 一般来说,测量系统的分辨率应为获得测量参数的过程变差的十分之一。测量系统的偏倚和线性由量具校准来确定。测量系统的稳定性可由重复测量相同部件的同一质量特性的均值极差控制图来监控。测量系统的重复性和再现性由GageR&R研究来确定。 分析用的数据必须来自具有合适分辨率和测量系统误差的测量系统,否则,不管我们采用什么样的分析方法,最终都可能导致错误的分析结果。在ISO10012-2和QS9000中,都对测量系统的质量保证作出了相应的要求,要求企业有相关的程序来对测量系统的有效性进行验证。 测量系统特性类别有F、S级别,另外其评价方法有小样法、双性、线性等. 分析工具 在进行MSA分析时, 推荐使用Minitab软件来分析变异源并计算Gage R&R和P/T。并且根据测量部件的特性,可以对交叉型和嵌套型部件分别做测量系统分析。 另外,Minitab软件在分析量具的线性和偏倚研究以及量具的分辨率上也提供很完善的功能,用户可以从图形准确且直观的看出量具的信息。 MSA的基本内容 数据是通过测量获得的,对测量定义是:测量是赋值给具体事物以表示他们之间关于特殊特性的关系。这个定义由C.Eisenhart首次给出。赋值过程定义为测量过程,而赋予的值定义为测量值。 从测量的定义可以看出,除了具体事物外,参于测量过程还应有量具、使用量具的合格操作者和规定的操作程序,以及一些必要的设备和软件,再把它们组合起来完成赋值的功能,获得测量数据。这样的测量过程可以看作为一个数据制造过程,它产生的数据就是该过程的输出。这样的测量过程又称为测量系统。它的完整叙述是:用来对被测特性定量测量或定性评价的仪器或量具、标准、操作、夹具、软件、人员、环境和假设的集合,用来获得测量结果的整个过程称为测量过程或测量系统。 众所周知,在影响产品质量特征值变异的六个基本质量因素(人、机器、材料、操作方法、测量和环境)中,测量是其中之一。与其它五种基本质量因素所不同的是,测量因素对工序质量特征值的影响独立于五种基本质量因素综合作用的工序加工过程,这就使得单独对测量系统的研究成为可能。而正确的测量,永远是质量改进的第一步。如果没有科学的测量系统评价方法,缺少对测量系统的有效控制,质量改进就失去了基本的前提。为此,进行测量系统分析就成了企业实现连续质量改进的必经之路。 近年来,测量系统分析已逐渐成为企业质量改进中的一项重要工作,企业界和学术界都对测量系统分析给予了足够的重视。测量系统分析也已成为美国三大汽车公司质量体系QS9000的要素之一,是6σ质量计划的一项重要内容。目前,以通用电气(GE)为代表的6σ连续质量改进计划模式即为:确认(Define)、测量(Measure)、分析(Analyze)、改进(Improve)和控制(Control),简称DMAIC。 从统计质量管理的角度来看,测量系统分析实质上属于变异分析的范畴,即分析测量系统所带来的变异相对于工序过程总变异的大小,以确保工序过程的主要变异源于工序过程本身,而非测量系统,并且测量系统能力可以满足工序要求。测量系统分析,针对的是整个测量系统的稳定性和准确性,它需要分析测量系统的位置变差、宽度变差。在位置变差中包括测量系统的偏倚、稳定性和线性。在宽度变差中包括测量系统的重复性、再现性。 测量系统可分为“计数型”及“计量型”测量系统两类。测量后能够给出具体的测量数值的为计量型测量系统;只能定性地给出测量结果的为计数型测量系统。“计量型”测量系统分析通常包括偏倚(Bias)、稳定性(Stability)、线性(Linearity)、以及重复性和再现性(Repeatability&Reproducibility,简称R&R)。在测量系统分析的实际运作中可同时进行,亦可选项进行,根据具体使用情况确定。 “计数型”测量系统分析通常利用假设检验分析法来进行判定。 MSA之统计特性 1.测量系统必须处于统计控制中,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的。这可称为统计稳定性。 2.测量系统的变差必须比制造过程的变差小。 3.变差应小于公差带。 4.测量精度应高于过程变差和公差带两者中精度较高者,一般来说,测量精度是过程变差和公差带两者中精度较高者的十分之一。 5.测量系统统计特性可能随被测项目的改变而变化。若真的如此,则测量系统的最大的变差应小于过程变差和公差带两者中的较小者。 MSA的指标 1.量具重复性:指同一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量值(数据)的变差。 2.量具再现性:指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。 3.稳定性:指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。 4.偏倚:指同一操作人员使用相同量具,测量同一零件之相同特性多次数所得平均值与采用更精密仪器测量同一零件之相同特性所得之平均值之差,即测量结果的观测平均值与基准值的差值,也就是我们通常所称的“准确度”。 5.线性:指测量系统在预期的工作范围内偏倚的变化。 MSA时机 1).新生产之产品PV有不同时; 2).新仪器,EV有不同时; 3).新操作人员,AV有不同时; 4).易损耗之仪器必须注意其分析频率。 R&R之分析 决定研究主要变差形态的对象。 使用"全距及平均数"或"变差数分析"方法对量具进行分析。 于制程中随机抽取被测定材料需属统一制程。 选2-3位操作员在不知情的状况下使用校验合格的量具分别对10个零件进行测量, 测试人员将操作员所读数据进行记录, 研究其重复性及再现性(作业员应熟悉并了解一般操作程序, 避免因操作不一致而影响系统的可靠度)同时评估量具对不同操作员熟练度。 针对重要特性(尤指是有特殊符号指定者)所使用量具的精确度应是被测量物品公差的1/10, (即其最小刻度应能读到1/10过程变差或规格公差较小者; 如: 过程中所需量具读数的精确度是0.01m/m, 则测量应选择精确度为0.001m/m), 以避免量具的鉴别力不足,一般之特性者所使用量具的精确度应是被测量物品公差的1/5。 试验完后, 测试人员将量具的重复性及再现性数据进行计算如附件一(R&R数据表), 附件二(R&R分析报告), 依公式计算并作成-R管制图或直接用表计算即可。 结果分析 1)当重复性(EV)变差值大于再现性(AV)时: 量具的结构需在设计增强。 量具的夹紧或零件定位的方式(检验点)需加以改善。 量具应加以保养。 2)当再现性(AV)变差值大于重复性(EV)时: 作业员对量具的操作方法及数据读取方式应加强教育, 作业标准应再明确订定或修订。 可能需要某些夹具协助操作员, 使其更具一致性的使用量具。 量具与夹治具校验频率于入厂及送修纠正后须再做测量系统分析, 并作记录。 MSA的步骤 测量系统分析的评定通常分为两个阶段: 1.第一阶段 验证测量系统是否满足其设计规范要求。主要有两个目的: (1)确定该测量系统是否具有所需要的统计特性,此项必须在使用前进行。 (2)发现哪种环境因素对测量系统有显着的影响,例如温度、湿度等,以决定其使用之空间及环境。 2.第二阶段 (1)目的是在验证一个测量系统一旦被认为是可行的,应持续具有恰当的统计特性。 (2)常见的就是“量具R&R”是其中的一种型式。 MSA测量系统分析 一、测量系统介绍 1、MSA基本概念 2、为什么要考虑测量系统变异 数据变异的来源 误差因素的影响 3、MSA的重要性 二、测量系统的统计特性 1、可接受的测量系统 对总变量的影响 对生产规格的影响 2、测量分析前的准备 3、测量系统变异的组成部分 三、测量系统分析(结合案例) 1、计量型测量系统研究 偏差分析 独立样本法 图表法 重复性、再现性分析(R & R) 极差法 均值和极差法 ANOVA法 稳定性分析 线性分析 2、量具特性曲线 3、计数型测量系统研究 小样法 大样法 相关分析 希望对你有帮助
2. 量测仪器
测量高度或者其他尺寸可以使用Goodscan量方称重一体机来测量,这种设备可以自动测量物体的长宽高、体积、重量。
精度高,还可以测量不规则物体。工具/原料 Goodscan 200P体积测量仪 待测物体(任意形状规则或者不规则都可) 仪器功能及参数1 Goodscan200体积测量仪器是专为客户提供的测量范围在 5*5*5~60*60*60cm 中小型货物体积的称重量方扫码拍照一体机设备,它的优势在于尺寸测量精度和称重精度更高,尺寸平均精度达到 5mm,称重精度为30g。
2 Goodscan200 体积测量仪器功能及应用: 支持的功能:称重、量方、拍照、扫码、数据/图片存储和上传、提供数据接口,对接系统 应用场景:尺寸测量、包裹称重、手动扫码、运费计算、拍照存档
3 Goodscan200 体积测量仪器具体参数: 名称 : GS200P 测量原理:3D视觉测量 量方传感器:异方科技深度传感器 测量范围:5*5*5~60*60*60cm,精度±10mm; 平均精度:±5mm 测量速度:1 秒/件 数据输出:Excel/Http/TCP/串口 称重量程:小于 100kg 称重精度:±30g
4 Goodscan200 体积测量仪器结构示意图: END 操作方法 将待测物体放在仪器的测量区域。2 仪器会自动识别物体,并快速测量出该物体的重量、体积、条码等信息。并将测量结果显示在显示器上面。整个过程不到1秒。
3. 在线测量仪器
1、直接测量法:将被测量的量直接的用同类标准的量来比较得到被测计量仪器校正量值的测量方法,在进行中不必测量与被测的量有函数关系的其他量,但要对不属于测量对象而却影响被测量值的影响量进行计量仪器校正。
2、间接测量法:通过对被测量的量有函数关系的其它量的测量,能得到被测量值的测量方法。
3、相对测量法:计量器具仅指示被测量相对于标准量的偏差,从而得到被测量的方法称为相对测量。
4、绝对测量法:计量器具可以直接测得被测量的整个量值。
而计量仪器校验的方法还有接触测量法,非接触测量法与离线测量法和在线测量法等
4. 测试计量技术及仪器
应聘仪表工程,五金工程,电气工程等。
测控技术与仪器专业就业方向主要有:
智能仪器仪表方向:这个方向主要是从事仪器仪表,电子产品的软件,硬件研发,测试,也可以从事仪表自动控制方面的工作。
测试计量技术与仪器方向:这个方向主要是从事计量,测试检测,品质检验工作。该方向学术研究的成分比较重一点,一般本科生比较难找到较合适的工作。
计算机测控技术方向:这个方向有一个课程是图象检测与处理,是一个比较偏向与计算机的方向。
5. 测量仪器校准报告
校准和检定的主要区别:
1、 校准不具有强制性,属组织自愿的溯源行为,校准结论属于没有法律效力的技术文件;检定具有强制性,属法制计量管理范畴的执法行为,检定结论属于具有法律效力的文件。
2、 校准主要确定测量仪器的示值误差,属于自下而上的量值溯源;检定是对其计量特性及技术要求符合性的全面评定,属于自上而下的量值传递。
3、 校准的对象是除检定之外的所有计量器具和测量设备;检定的对象是计量基准器、计量标准器及用于贸易结算、安全防护、医疗卫生、环境监测之类的测量仪器。
4、 校准的依据是校准规范、校准方法,通常应做统一规定,有时也可自行制定;检定的依据是检定规程。
5、 校准通常不判断测量仪器合格与否,必要时也可确定其某一特性是否符合预期要求;检定必须做出合格与否的判断。
6、 校准结果通常出具校准证书或校准报告;检定的结果是合格的发检定证书,不合格的发不合格通知书。
7、 校准的频次由组织自行确定,可定期、不定期或使用前进行;检定按照法律规定的强制检定周期实施。
8、 校准的方式由组织自行确定,可内校、外校或两种方式结合;检定需由法定计量检定机构或授权的计量检定机构进行