返回首页

等精度频率测量(等精度频率测量技术)

来源:www.xrdq.net   时间:2023-01-17 08:26   点击:179  编辑:admin   手机版

1. 等精度频率测量技术

测量频率的方法有许多种,最常用的方法为对信号周期计数。在该方法中,每检测到过零点,计数器就递增。根据该计数,可测量出周期宽度。如果过零点精确且计数器精度足够高,周期计数可能是一个简单而实用的方法。但是如果输入信号有较大的谐波分量,导致过零点附近失真,那么该方法将产生较大的误差。

2. 频率准确度测量方法

LCR测试仪的使用方法

1.LCR测试仪的加电

首先将LCR测试仪电源线带IEC一端接到电桥左后方的IEC插座上,另一端插入合适的电源插座上,搬动LCR测试仪左后方的船形开关,即使电桥通电。通电后,显示器、量程及功能指示器随之变亮。LCR测试仪可自动置于电感、电容测量档,并联等效及1KHz频率状态。正常情况下,内部电路加电几秒钟后即能稳定,便可进行测量。

2.LCR测试仪被测元件的接入方法

⑴通常径向引线的元件可直接插入组合测试夹夹板内,而接入特殊柔性引线的元件时,应借助夹板离合器进行,该离合装置位于测试夹的正下方。

⑵接入轴向引线元件时,为避免扭折引线,可采用轴向转接头,先把这两个配件分别插入测试夹的两端,再将其间距调正到适合元件测量的位置,然后便将轴向引线元件插入两端的配件夹内。

⑶在轴向转接头必需相当牢固定的场合,如在测量大量的同类元件时,需采用支撑板。

安装支撑板:首先把轴向转接头调整到适当的位置上,然后将支撑板悬置于轴向转接头上方,让每个轴向转接头穿过支撑板上的槽缝,放好支撑板,将固定螺钉对准LCR测试仪面板上的螺孔,最后上紧螺钉。注意:安装时不易将螺钉拧得过紧。

注意:本LCR测试仪虽能够对充电电容接入测试进行防护,但最好应将充电电容经适当电阻放电后才进行测量。

LCR测试仪IM3533-01

3.使用中注意LCR测试仪读数及测量条件显示

⑴LCR测试仪的6位显示不一定全部是有效显示,在某些测量中测量数据的未尾值可能跳动较大,应舍去这些跳动数值,读取其稳定值。

(2)一般使用LCR测试仪自动量程进行测量,以保证选择到正确的量程,操作到手动方式可以观察实际工作量程。应用于同批同种测量元件的批量测试时,可以选择量程锁定模式工作。

(3)串--并联指示

虽然LCR测试仪具有显示串联或并联等效值的选择性,但在不利的Q值情况下,用上述两种方式均不可能获得基本准确度。当需要改动某一显示方式以便提高基本准确度时,LCR测试仪通过下标s表示串联,下标p表示并联。

(4)频率提示

200μF~2000μF的电容,200H~2000H的电感,测量频率在100Hz只能获得基本准确度。同样,200pF~2nF的电容和200μH~2mH的电感,只有在1KHz测量频率上才能获得基本准确度,因此获得最佳测试性能,应选择最合适的测试频率。

(5)测试电平显示

高K陶瓷电容或高导磁磁性电感器等,对测试信号电平的大小较为敏感,不同的测试电平会产生相异的测量结果。同时,测试电平越低,测量稳定性越差。

4. LCR测试仪的测量条件参考表

表 测量条件参考

元件名称 测量频率 串--并联

电容<1μF 1KHz 并联

电容≥1μF(非电解电容) 100Hz 并联

电容≥1μF(电解电容) 100Hz 串联(SER)

电感<1H 1KHz 串联(SER)

电感≥1H 100Hz 串联(SHR)

电阻<10KΩ 100Hz 串联(SHR)

电阻≥10KΩ 100Hz 并联

当日置LCR测试仪在100Hz和1KHz频率上,能同时提供串联和并联等效元件值时建议:一定型号和数值的元件应采用一定的方式进行测量。这样做是为了获得既最适合于元件的结构形式,又最适合于元件常用的工作方式的测量。如大容量的电解电容器,常作为电源波滤元件,测量时会发现,1KHZ频率上的电容值明显低于100Hz频率上的电容值。这种现象是由于这类元件的几何结构有关诸因素所构成。因此,电解电容在100Hz频率上测量的电容值是最有用的,电解电容的损耗项通常在串联等效电阻(ESR)上显示,因此,应该测量其串联电容和串联电阻值。

3. 等精度数字频率计的设计

展开全部

简易频率计

一、设计任务与要求

1.设计制作一个简易频率测量电路,实现数码显示。

2.测量范围:10Hz~99.99KHz

3.测量精度: 10Hz。

4. 输入信号幅值:20mV~5V。

5. 显示方式:4位LED数码。

二、方案设计与论证

频率计是用来测量正弦信号、矩形信号、三角形信号等波形工作频率的仪器,根据频率的概念是单位时间里脉冲的个数,要测被测波形的频率,则须测被测波形中1S里有多少个脉冲,所以,如果用一个定时时间1S控制一个闸门电路,在时间1S内闸门打开,让被测信号通过而进入计数译码器电路,即可得到被测信号的频率fx。

任务要求分析:

频率计的测量范围要求为10Hz~99.99KHz,且精度为10Hz,所以有用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;要求输入信号的幅值为20mV~5V,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路;频率计的输出显示要经过锁存器进行稳定再通过4位LED数码管进行显示。

经过上述分析,频率计电路设计的各个模块如下图:

方案一:

根据上述分析,频率计定时时间1s可以通过和电容、电阻构成的产生1000Hz的脉冲,再进行分频成1Hz即周期为1s的脉冲,再通过把脉冲正常高电平为1s;放大整形电路通过与非门、非门和二极管组成;闸门电路用一个与门,只有在定时脉冲为高电平时输入信号才能通过与门进入计数电路计数;计数电路可以通过5个十进制的计数器组成,计数器再将计的脉冲个数通过锁存器进行稳定最后通过4个LED数码显像管显示出来。

方案二:

频率计定时时间1s可以直接通过和电容、电阻构成的产生1Hz的脉冲,再通过把脉冲正常高电平为1s;放大整形电路可以直接用一个具有放大功能的施密特触发器对输入的信号进行整形放大,其他模块的电路和方案一的相同。

通过对两种方案的分析,为了减少总的电路的延迟时间,提高测量精确度,所以选择元件少的第二种方案。

三、单元与参数计算

用555_VIRTUAL定时器和电容、电阻组成产生1Hz的脉冲,根据书中的振荡周期 : T=(R1+R2)C*ln2 取C=10uF,R1=2KΩ,T=1s,计算得:R2=70.43KΩ,再通过T_FF把脉冲正常高电平为1s的脉冲,元件的连接如下:

经示波器仿真,产生的脉冲的高电平约为1S。

放大整形电路:

用一个74HC14D_4V的含放大功能的施密特触发器对输入脉冲进行放大整形,把输入信号放大整形成4V的矩形脉冲,其放大整形效果如下图:

闸门电路:

用一个与门74LS08作为脉冲能否通过的闸门,当定时信号Q为高电平时,闸门打开,输入信号进入计数电路进行计数,否则,其不能通过闸门。

计数电路:

计数电路用5(4)片74192N计数器组成100000(10000)进制的计数电路,74192N是上升沿有效的,来一个脉冲上升沿,电路记一次数,所以计数的范围为0~99999(5000)。但计数1S后要对计数器进行清零或置零,在这里用清零端,高电平有效,当计数1S后,Q为低电平,Q’为高电平,所以用Q’作为清零信号,接线图如下:

锁存显示电路:

当计数电路计数结束时,要把计得脉冲数锁存通过数码显示管稳定显示出来。锁存器用2片74ls273,时钟也是上升沿有效,当Q为下降沿时,Q’恰好是上升沿,所以用Q’作为锁存器的时钟,恰能在计数结束时把脉冲数锁存显示,电路的接线图如下:

四、总电路工作原理及元器件清单

1.总原理图

2.电路完整工作过程描述(总体工作原理)

555组成的多谐振荡器产生1Hz的脉冲,经过T触发器整形成高电平时间为1S的脉冲,高电平脉冲打开闸门74LS08N,让经施密特触发器74HC14D放大整形的被测脉冲通过,进入计数器进行1S的计数。当计数结束时,T触发器的Q为下降沿,Q’刚好为上升沿,触发锁存器工作,让计数器输出的信号通过锁存器锁存显示,同时,高电平的Q’信号对计数电路进行清零,此后,电路将循环上述过程,但对于同一个被测信号,在误差的允许范围内,LED上所显示的数字是稳定的。

3.元件清单

元件序号 型号 主要参数 数量 备注

1 74192 5 加法计数器

2 74LS273 2 锁存器

3 DCD_HEX 4 LED显示器

4 555_VIRTUAL 1 定时器

5 T_FF 1 T触发器

6 CAPACITOR_RATED 电容10Uf、额定电压50V 1 电容

7 CAPACITOR_RATED 电容10Nf、额定电压10V 1 电容

8 RES 阻值2KΩ 1

9 RES 阻值 1

10 74LS08 1 双输入与门

11 74HC14D_4V 1 施密特触发器,放大电压4V

12 AC_VOLTAGE 1 可调的正弦脉冲信号

五、仿真调试与分析

把各个模块组合起来后,进行仿真调试以达到任务要求。

① 在信号输入端输入10Hz的交流脉冲,仿真,结果如下:

说明仿真的结果准确

② 在信号输入端输入300Hz的交流脉冲,仿真,结果如下:

仿真结果准确

③ 在信号输入端输入3KHz正弦脉冲,仿真,结果如下:

④输入20KHz的正弦脉冲,仿真,结果如下:

仿真结果结果与实际的结果相差20Hz,这说明频率越高,误差越大。经分析,这是由于各个元器件存在着延迟时间,1S的脉冲,经过各个元器件的延迟,计数时间会大于1s,频率越高,误差越大,所以计数的时间要稍微小于1S,调小时基电路的R3为70.23KΩ,仿真,结果如下:

还是存在误差,经过多次调节R3仿真,最后确定R3为70.06 KΩ时对于各个频率的测试都比较准确,20KHz时仿真结果如下:

所以R3为70.06KΩ是测得的各个频率值都比较准确,且电路设计都符合测任务要求。

六、结论与心得

在这次课程设计的过程中,我收获不少。首先,我学会了把一个电路分成模块去设计,最后再整合,这样可以把一个复杂的电路简单化了,并且这样方便与调试与修改;其次,设计有助了我去自学一些元器件的功能,去运用它;再次,我也初步会用multisim软件设计电路;最后,这次课程设计也提高了我查找问题、思考问题和解决问题的能力,还锻炼了我的耐性。

在这次课程设计中也遇到了很多问题,首先,是对元器件了解不多,对于要实现某种功能不知道用那一种元件,所以问同学,上网收索,再了解这种元件的逻辑功能,学会去用它;其次,不大会用电路设计软件,一开始用EWB软件设计,对模块仿真可以,但整合整个原理图仿真却不行,通过示波器观察输出波形发现脉冲走了一小段却停止了,以为是电路有问题,就查找了很多遍才找出问题,原来在那个软件仿真时是不允许存在两个信号,所以重新用multisim设计,才可以;最后,在用multisim仿真高频率时仿真速度极慢,所以调整了软件的仿真最大步长,但问题又出现了,信号紊乱,数码管显示数字不一,然后就猜想会不会是元件的问题,太高频率元件来不及反应就输出结果,但上网寻找答案,原来是软件的仿真步长会影响仿真的精确度,所以,某一范围的频率仿真,要用相应的最大仿真步长。

这个题目的设计花了自己不少心血,有时甚至一整天在弄,但是当自己成功地设计出电路时所获得的那一份成就感是无法表达的,所以整个电路的设计过程充满着苦恼与乐趣。

七、参考文献

[1] 阎石 《数字电子技术基本教程》第一版 ,清华大学出版社,2007.08

4. 高精度频率测量

精度最高频率计测量是一款可精准测量频率高性价比测仪分辨率最高可达12位/秒,测量频率可达|2.4GHZ,

5. 等精度测量原理

原理及原则:

1、坐标测量

通过全站仪可以直接测得观测点至观测目标之间角度差值与距离,据此通过三角学的换算关系可以计算出观测目标的坐标或观测点相对于已知点的位置。这些经纬仪部分的观测数据下载至计算机软件程序后,可以自动生成目标地区测绘图。

一些全站仪留有GPS系统的接口可供拓展,此两者结合之后可以互通所长(GPS系统不需要观测点与观测对象之间的视线通畅以及两个以上的已知点作为参考,而全站仪可以提供水平面测量的精度)。

2、角度测量

多数现代全站仪通过电子光学扫描镌刻在镜片上上的十字划分版来测量角度。好的全站仪精度可以达到0.5秒,而普通的建筑用全站仪的精度介于5至10秒之间。

3、距离测量

全站仪的测距原理是以安装在同轴望远镜的光敏二极管以一定光学路径发出调制微波或红外线信号,通过测量点的直角棱镜被反射后通过相同的光学路径返回并被分光棱镜传递至传感器以接受回馈,通过计算原始信号与反射信号的相位差来计算路程的远近。

多数全站仪需要在测量点安置一多用途光棱镜来实现信号反射,这种方式的测量距离通常较远,可达数公里。但有些仪器可以通过被测物体的自身亮度来完成这一过程,但有效距离只有几百米。EDM测距可以达到0.1mm的精度,但一般土地测量只取1mm的精度。

注意全站仪可以完全代替经纬仪的使用,但由于其高差测量是通过高度角与距离计算得出,精度较差,故只用于低等级测量,不能完全代替水准仪的使用。在精心布置仪器的情况下,全站仪的精度可达到四等水准测量的精度。

4、施工放样

在已知两个控制点进行定向的情况下,可以在全站仪的内部程序进行放样操作,放样即是得知某坐标在实际地面上的位置。

6. ⑵ 测量仪器监测频率与精度

对于部分数字万用表有频率测试档位的,直接将档位拨至频率Hz位置,红表笔插入V/Ω/Hz孔里、黑表笔插入com孔里,两个表笔不认相线、零线,顺便插入220V电源插座上即可测量电源频率。见下图所示。

从上图测量频率显示结构来看,50Hz的交流电频率,实际测量为49.97,这个结果还是比较靠谱的。这是测量低频频率的操作方法。友情提示,为了安全起见,此方法不易用于相线与相线380V之间的测量频率,防止损坏数字万用表的输入转换器和人身安全。

如果用于测量电磁炉一类的检测频率,得看数字万用表的频率测量范围;便宜的数字万用表的频率测量范围窄,并且测量精度不高,误差大,仅仅只能够作为频率的有无来初步判断。

像优德利UT61型数字万用表,其价格在430元左右的表,它的频率测量范围在10Hz~10MHz和10Hz~220MHz,测量误差在±0.1%,故它所测量的频率还比较准确。

在电子爱好者中,用这种数字万用表测量频率方法很简单,电子电路中有一个公共接地,俗称GND;将万用表黑表笔接GND上,红表笔接门控管(IGBT)的控制极(G),即可测量显示它的振荡频率;一般电磁炉IGBT工作频率在25~32KHz左右,千万不要将红表笔接IGBT的C极,因为它的直流电压为300V,怕损坏数字万用表哟。

这种价格稍微贵一点的数字万用表的档位都是自动换挡的,比较简单方便。不要用万用表测量超过频率测量范围的高频高压,且不说它测量结果差,严重时它会造成损坏数字万用表。

以上为个人观点,仅供提问者参考参考。

知足常乐2019.7.12日于上海

7. 等精度测量数据处理

计算公式:m(算)=m(中)/根号n。 误差预计中的各项中误差,原则上采用本矿积累和分析的实际数据。

现根据我矿××采区的同类测量导线的角度闭合差,求取井下测角中误差mβ,并进行相关误差分析,以提出适合于本矿(区)的井下测角中误差,为今后如何提高井下经纬仪导线测量精度做好一定的准备工作。

选取的闭合导线数原则上为8~10个,并为同精度,施测的条件大致相同。××采区经纬仪导线采用蔡司010B经纬仪配合50 m大钢尺测边。以测回法进行角度测量,导线精度利用为15秒级。因各导线的所有角度是等精度观测,其闭合差fβ是内角和的真误差。

8. 等精度测频法

一般来说,频率测量的方法有:

1.

计频法:所谓频率,就是单位时间内信号周期变化的次数。如果以1s为单位,测出此时间区间内的脉冲个数就是频率。这样的精度并不高,如果把单位时间放大到10s、100s等,这样精度会提高很多。

2.

计时法:测量一个脉冲来的时间和结束的时间,二者之差便是信号周期,取其倒数便是频率。但是如果待测频率很高,脉冲周期非常短

9. 频谱仪测量精度

分贝仪的国家标准是GB3785-83《噪音表电、声性能及测试方法》。1984年IEC又通过了 IEC804《积分平均声级计》国际标准,我国于1997年颁布了GB/T17181-1997《积分平均噪音表》。它们与IEC标准的主要要求是一致的。2002年国际电工委员会(IEC)发布了IEC61672-2002《噪音表》新的国际标准。该标准代替原IEC651-1979《噪音表》和 IEC804-1983《积分平均声级计》。我国根据该标准制定了JJG188-2002《噪音表》检定规程。

按新的标准将声级计按用途可分为通用噪音表,积分噪音表,频谱噪音表等,按精度可分为1级和2级,二种级别的噪音表的各种性能指标具有同样的中心值,仅仅是容许误差不同,而且随着级别数字的增大,容许误差放宽。

按体积还可分为台式,便携式,和袖珍式噪音表。

按其指示方式可分为模拟指示和数字指示噪音表。

10. 等精度观测

任何测量工作都是由观测者使用测量仪器和某种设备,按照一定的操作程序和方法,在一定的外界条件下进行观测的。

观测条件相同的观测称为等精度观测;观测条件不同的观测称为不等精度观测。

顶一下
(0)
0%
踩一下
(0)
0%