1. 电流互感器的测量原理
电流互感器原理是依据电磁感应原理制成的。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量 ,二次侧不可开路。
2. 电流互感器测量电流
鉴定方法如下:1)电流互感器额定电压不小于装设点线路额定电压。
2)根据一次负荷计算电流IC选择电流互感器变化。
3)根据二次回路的要求选择电流互感器的准确度并校验准确度。
4)校验动稳定度和热稳定度。
电流互感器是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。
3. 电流互感器的测量原理图
好坏测量方式
如果你有钳表和电流表很好办,先用万能表测下线圈有没有短路,接入电路工作,电流互感器输出直接接5A电流表,用钳表测母线的实际电流,对比电流表的电流,知道互感器的倍数乘以电流表应与钳表差不多,误差太大就有问题了。
4. 电流互感器测量电路
电流互感器与电表的接线长度根据不同的变电站和使用场所是不同的,如果电流互感器在室内和电表在同一个高压柜上安装时,电流互感器到电表的导线长度是比较短的,一般只有几米的长度
5. 电流互感器的测量方法
电压、电流互感器试验步骤
1.
对电压互感器一次绕组,宜采用单臂电桥进行测量;
2.
对电压互感器的二次绕组以及电流互感器的一次或二次绕组,宜采用双臂电桥进行测量,如果二次绕组直流电阻超过10ω,应采用单臂电桥测量;
3.
也可采用直流电阻测试仪进行测量,但应注意测试电流不宜超过线圈额定电流的50%,以免线圈发热直流电阻增加,影响测量的准确度。
4.
试验接线:将被试绕组首尾端分别接入电桥,非被试绕组悬空,采用双臂电桥(或数字式直流电阻测试仪)时,电流端子应在电压端子的外侧
6. 电流互感器测量原理电路图
电流互感器工作原理:
电流互感器的原理是依据电磁感应原理,它的一次绕组经常有线路的全部电流流过,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。
在理想的电流互感器中,如果假定空载电流Ⅰ0=0,则总磁动势Ⅰ0N0=0,根据能量守恒定律,一次绕组磁动势等于二次绕组磁动势,即Ⅰ1NI=-Ⅰ2N2
即电流互感器的电流与它的匝数成反比,一次电流对二次电流的比值Ⅰ1 /Ⅰ2称为电流互感器的电流比。当知道二次电流时,乘上电流比就可以求出一次电流,这时二次电流的相量与一次电流的相量相差1800。
7. 电流互感器的测量原理是
CT,就是电流互感器。电流互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次绕组匝数很少,串在需要测量的电流的线路中,因此它经常有线路的全部电流流过,二次绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的2次回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。
8. 电流互感器测试仪工作原理
就电流互感器本身来说,计量的精度比测量级要高,通常计量为0.2S级,测量为0.5级。
大多时候,计量绕组所用铁心材质为合金。
测量级所用材质为硅钢片。
9. 电流互感器的测量原理和使用注意事项
原因如下
返回导体的影响
在理想情况下:互感器二次绕组的导线均匀分布在圆环形铁芯上,一次绕组也均匀分布或一次绕组为无限长导体并从铁芯中心穿过时,铁芯各段的磁通密度是相等的。实际上互感器一次绕组结构本身存在返回导体(倒立式、贯穿形互感器除外),例如高压互感器常用“U”形一次绕组由两根引线,而次绕组套在一根引线上,另一根引线和环部(弯曲部)导体就构成了返回导体。
分析返回导体的影响时,以简单的只有单根与互感器一次绕组导体平行的返回导体为例。由于返回导体中的电流产生的磁通,经过铁芯靠近返回导体一侧的铁芯磁通密度增加,远离返回导体一侧的铁芯磁通密度减小,使得铁芯各段的磁通密度不等。因为这种外磁场产生的磁通路径大部分通过空气,铁芯磁路只是极小一段,所以其磁感应强度与空气的磁导率成正比;而且磁力线只与部分二次绕组相链,在正常情况下,是使二次漏抗增加的漏磁。但是在大的过电流情况下,则会使靠近返回导体一侧的铁芯磁通密度很快增长,误差迅速增大,尤其是对于保护用电流互感器,有可能造成符合误差超过限值。
铁芯励磁特性的分散性
在额定安匝、二次负荷、铁芯截面积、导线相同的情况下,由于铁芯励磁特性的不同,测得的误差结果也不同,而且相差悬殊。