1. 微型直线伺服驱动器
(1)位置比例增益
设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。
(2)位置前馈增益
设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100%
(3)速度比例增益
设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。
(4)速度积分时间常数
设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。
(5)速度反馈滤波因子
设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。
(6)最大输出转矩设置
设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为 ON,否则为OFF。
在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。
(7)手动调整增益参数
调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。
调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。
调整微分增益KVD值。微分增益主要目的是使速度旋转平稳,降低超调量。因此,将KVD值渐渐加大可改善速度稳定性。
调整位置比例增益KPP值。如果KPP值调整过大,伺服电机定位时将发生电机定位超调量过大,造成不稳定现象。此时,必须调小KPP值,降低超调量及避开不稳定区;但也不能调整太小,使定位效率降低。因此,调整时应小心配合。
(8)自动调整增益参数
现代伺服驱动器均已微计算机化,大部分提供自动增益调整( autotuning)的功能,可应付多数负载状况。在参数调整时,可先使用自动参数调整功能,必要时再手动调整。
事实上,自动增益调整也有选项设置,一般将控制响应分为几个等级,如高响应、中响应、低响应,用户可依据实际需求进行设置。
2. 脉冲型伺服驱动器
伺服驱动器有方向+、方向-和脉冲+、脉冲-,四个端子连接上位机,就2路光藕,方向一路,脉冲一路,上位机给定信号,控制驱动器上方向、脉冲这两路光藕的通断,来控制伺服驱动器的正转与反转、运行与停止。
控制伺服电机主要有两种信号,一种是数字信号即脉冲控制,另一种是模拟信号,即电压或电流控制,一般是直流电压或直流电流控制。
3. 微型直线伺服驱动器图片
直流伺服电机驱动器厂家主要是以日本与国内品牌为主。国外直流伺服电机驱动器品牌有日本东方、日本山洋、BEAK等。国内直流伺服电机驱动器以一能、ICAN、IRELIA、鸣志等一线品牌,以及珠三角地区众多中小厂家为主。
4. 微型直线伺服驱动器参数
正常情况下,用单相220V交流电的1.8KW伺服电机,铜电缆选用1.5平方毫米以上。 1、电流=1800/220=8.2A,选用1.5平方铜线,考虑富裕量,可以用2.5平方毫米以上铜线。 2、如果线路长度超过100米,需要计算,假设长度为L,20℃,铜电阻率:0.0175Ω·mm2/m,电压降允许10%,选20V。 3、线路电阻R=0.0175*L*2/S=20/5,故,S=0.0175*L*2*5/20平方毫米铜线。 4、伺服电机一般使用柔性专用护套,保持低温条件下的柔软性,根据需要选用,如:TRVVP电缆,抗拉卷筒电缆,抗拉耐磨卷筒电缆,防开裂耐磨扁电缆,带软钢丝抗拉卷筒电缆,防开裂卷筒电缆,高耐磨高强度耐卷曲电缆,高柔性聚氨酯(PUR)拖链电缆,伺服电机屏蔽电缆,拖链电缆等。
5. 微型直线伺服电机
伺服电机伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
6. 微型直线伺服驱动器接线图
伺服驱动器内部结构由电源电路、继电器板电路、主控板电路、驱动板电路及功率变换电路组成。电源电路作用,将外部输入的直流电转换为大小不同的直流电输出,为后续的继电器板、驱动板、功率变换电路提供直流电源。继电器板作用,提供直流电完成控制信号、检测信号传递。
伺服驱动器接线方法
1. 主回路接线:
1).R、S、T电源线的连接;
2)伺服驱动器U、V、W与伺服电动机电源线U、V、W之间的接线;
2. 控制电源类接线:
1). r 、t控制电源接线;
2)I/O口控制电源接线;
3. I/O接口与反馈检测类接线
7. 线性伺服驱动器
线性驱动系统是一种机械配件,特点是驱动平滑,无力矩纹波,无电磁开关噪音,高带宽,并可驱动超小电感量的电机,适用于要求低噪音,安静,对EMI/RFI电磁辐射敏感和超平滑运动的应用。
线性驱动系统适用于要求特殊的领域,相比普通PWM开关型伺服驱动器,其特点是:驱动平滑,无力矩纹波,无电磁开关噪音,高带宽,并可驱动超小电感量的电机。
线性驱动系统可以大大减小电机发热,延长有刷电机的电刷寿命。
用户可方便的设定电流极限、动态增益、伺服补偿、偏置量等。
8. 直线电机伺服驱动器
此报警代码是编码器与伺服放大器之间通讯异常。可能是以下原因造成:
1.接头CN2没有接好。解决方法:请正确接线。
2.编码器故障。解决方法:更换电机。
3.编码器电缆故障。解决方法:修理或者更换电缆。
9. 直驱伺服驱动器
它们的主要区别在于:
它们的输出力矩大小不一样,直驱马达机输出力矩大,而普通马达机的小。因此直驱马达机可以直接称为力矩伺服,可以直接与运动装置连接,省去了诸如减速器,齿轮箱,皮带等等连接机构;而普通马达机则不能省。