返回首页

电机旋转怎么变成直线(直线电机和旋转电机)

来源:www.xrdq.ne   时间:2023-01-03 12:14   点击:288  编辑:admin   手机版

1. 直线电机和旋转电机

交流伺服电机与三相交流异步电动机的区别在于:

一、控制精度不同

两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

二、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

三、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

四、过载能力不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同

步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

六、速度响应性能不同

步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机

直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。直线异步电动机的动子有三种形式:

(1)磁性动子 动子是由导磁材料制成(钢板),既起磁路作用,又作为笼型动子起导电作用。

(2)非磁性动子 ,动子是由非磁性材料(铜)制成,主要起导电作用,这种形式电动机的气隙较大,励磁电流及损耗大。

(3)动子导磁材料表面覆盖一层导电材料,导磁材料只作为磁路导磁作用;覆盖导电材料作笼型绕组。

因磁性动子的直线异步电动机结构简单,动子不仅作为导磁、导电体,甚至可以作为结构部件,其应用前景广阔。

直线异步电动机的工作原理和旋转式异步电动机一样,定子绕组与交流电源相连接,通以多相交流电流后,则在气隙中产生一个平稳的行波磁场(当旋转磁场半径很大时,就成了直线运动的行波磁场)。该磁场沿气隙作直线运动,同时,在动子导体中感应出电动势,并产生电流,这个电流与行波磁场相互作用产生异步推动力,使动子沿行波方向作直线运动。若把直线异步电动机定子绕组中电源相序改变一下,则行波磁场移动方向也会反过来,根据这一原理,可使直线异步电动机作往复直线运动。

直线异步电动机主要用于功率较大场合的直线运动机构,如门自动开闭装置,起吊、传递和升降的机械设备,驱动车辆,尤其是用于高速和超速运输等。由于牵引力或推动力可直接产生,不需要中间连动部分,没有摩擦,无噪声,无转子发热,不受离心力影响等问题。因此,其应用将越来越广。直线同步电动机由于性能优越,应用场合与直线异步电动机相同,有取代趋势。直线步进电动机应用于数控绘图仪、记录仪、数控制图机、数控裁剪机、磁盘存储器、精密定位机构等设备中。

同步式(次级为永久磁钢)由于效率高、推力密度大、可控性好等优点,尽管其对隔磁防尘要求较高和装配较困难,现在也已成为机床用直线电机的主流

2. 直线电机和旋转电机的关系

  铁路干线电力机车、工矿电力机车、电力传动内燃机车和各种电动车辆(如蓄电池车、城市电车、地下铁道电动车辆)上用于牵引的电机   。

牵引电机包括牵引电动机、牵引发电机、辅助电机等。  牵引电动机 在机车或动车上用于驱动一根或几根动轮轴的电动机。牵引电动机有多种类型,如直流牵引电动机、交流异步牵引电动机和交流同步牵引电动机等。直流牵引电动机,尤其是直流串励电动机有较好调速性能和工作特性,适应机车牵引特性的需要,获得广泛应用。  牵引电动机的工作原理与一般直流电动机相同,但有特殊的工作条件:空间尺寸受到轨距和动轮直径的限制;在机车运行通过轨缝和道岔   时要承受相当大的冲击振动;大、小齿轮啮合不良时电枢上会产生强烈的扭转振动;在恶劣环境中运用,雨、雪、灰沙容易侵入等。因此牵引电   动机在设计和结构上也有许多要求,如要充分利用机体内部空间使结构紧凑,要采用较高级的绝缘材料和导磁材料,零部件需有较高的机械强   度和刚度,整台电机需有良好的通风散热条件和防尘防潮能力,要采取特殊的措施以应付比较困难的“换向”条件以减少炭刷下的火花等。  牵引电动机有两种悬挂方式。一种是牵引电动机和动轮轴连接的悬挂方式,称为抱轴式悬挂或半悬挂。采用这种悬挂方式时,动轮通过轨   缝和道岔所产生的冲击振动会直接传给牵引电动机。抱轴式悬挂适用于结构速度低于120公里/小时的机车车辆。另一种是架承式悬挂(或称全悬   挂)。采用这种悬挂方式时牵引电动机固定悬挂在转向架构架上,在牵引电动机轴端和小、大齿轮之间加入各种弹性连接元件,以减小冲击振动   的影响。架承式悬挂适用于结构速度高于120公里/小时的机车车辆。  在用牵引变压器降压经硅整流器或大功率晶闸管整流后供电给直流串励牵引电动机时,加在牵引电动机上的电压为脉动电压,因此这种牵   引电动机称为脉流牵引电动机。大功率脉流牵引电动机的“换向”条件更加困难。此外,电动机内部还有一些附加损耗,从而引起电动机温升   ,因此,脉流牵引电动机在设计和结构上还要采取一定的特殊措施,以解决“换向”和温升两个突出的问题。  牵引发电机 专用于电力传动内燃机车,以供给牵引电动机电力的发电机,又称主发电机。牵引发电机有直流和交流两种。直流牵引发电   机直接向直流牵引电动机供电。交流牵引发电机发出的三相交流电经硅整流器整流后再向直流牵引电动机供电。交流整流电路是三相的,整流   电压虽然有脉动,但脉动量比较小,因此牵引电动机还被认为是一般的直流电动机。  辅助电机 电力机车上的辅助电机可用直流电动机,也可用三相交流异步电动机。用直流电动机作为辅助电机时,须由专用的硅整流器供   电。用三相交流异步辅助电动机时,须由静止变相、变频装置或专用的旋转电机供给三相电源。这种专用的旋转电机称为劈相机,可以把单相   交流电变为三相交流电。  发展趋向 为了解决直流和脉流牵引电动机的“转向”问题,有些国家已在使用晶闸管无换向器式牵引电动机和三相交流异步变频牵引电   动机,并在试验以直线异步电动机为动力的磁悬浮高速车辆。晶闸管无换向器式牵引电动机是由一台同步电动机和一组晶闸管逆变器组成,用   晶闸管和转子位置检测器来代替直流牵引电动机的换向器和炭刷结构。这种电动机具有直流电机的优点而没有困难的“换向”问题。但晶闸管   及其控制系统相当复杂,所以电子元件直接影响电动机的运行可靠性。三相交流异步变频牵引电动机结构简单,工作可靠,成本低廉,是比较   理想的牵引电动机。但由于需用变频调速,它的发展和应用一度受到限制。60年代,大功率晶闸管变频装置的发展使异步电动机能够实现变频   调速。现在各国已有较多机车和动车采用三相交流异步变频牵引电动机。联邦德国和日本在试验的磁悬浮高速车辆上采用直线异步电动机。它的初级绕组敷设在地面导轨上,由地面的变频电源供电以产生行波磁场,调节供电电源频率就可改变磁悬浮高速车辆的速度。次级绕组就是反应板,装在车辆的构架上。初级行波磁场和次级感应电流的相互作用,不仅产生使车辆前进的推力,而且还产生磁拉力以悬浮车辆,并在制动工况时起着动力制动的作用。

3. 直线电机和旋转电机速度对比

相关概念

与脉冲当量相关的术语。

脉冲当量(P)

数控系统发出一个脉冲时,丝杠移动的直线距离或旋转轴转动的度数,也是数控系统所能控制的最小单位。该值越小,机床加工精度和工件表面质量越高;值越大,机床最大进给速度越大。

因此,在进给速度满足要求的情况下,建议设定较小的脉冲当量。

机床所能达到的最大进给速度与脉冲当量的关系为:

例如:朗达4S的硬件频率为1MHz,假设脉冲当量为0.001mm/p,则:

机械减速比(m/n)

减速器输入转速与输出转速的比值,也等于从动轮齿数与主动轮齿数的比值。在数控机床上为电机轴转速与丝杠转速的比值。即:

螺距(d)

丝杠上相邻两个螺纹对应点之间的轴距离。

电子齿轮比(B/A)

为伺服驱动器参数(例:安川驱动器,B为PN202,A为PN203),伺服驱动器对接收到上位机的脉冲频率进行放大或缩小。B/A的值大于1为放大,值小于1为缩小。

例如:如果上位机输入频率为100Hz,电子齿轮比分子设为1,分母设为2,那么伺服驱动器实际运行速度按照50Hz的脉冲进行。

如果上位机输入频率100Hz,电子齿轮比分子设为2,分母设为1,那么伺服驱动器实际运行速度按照200Hz的脉冲进行。

编码器分辨率(F)

伺服电机轴旋转一圈所需的脉冲数。查看伺服电机的铭牌,并对应驱动器说明书即可确定编码器分辨率。

下图为安川SGMSH型号电机的铭牌。其中电机型号中第四位是序列编码器规格,该电机分辨率为217,即131072。

例如:某型号机床(配安川驱动器)的丝杠螺距为5毫米,编码器分辨率为17bit,脉冲当量为0.0001mm/p,机械减速比1:1,则:

设定方法

脉冲当量的设定值决定机床的最大进给速度。在进给速度满足要求的情况下,可以设定较小的脉冲当量。

设置脉冲当量后,根据脉冲当量公式计算电子齿轮比或细分数,再设置到驱动器中。

对于不同的电机系统,脉冲当量计算方法不同。

一般来说,对于模具机用户可考虑脉冲当量为0.001mm/p(此时最大进给速度为9600mm/min)或者0.0005mm/p(此时最大进给速度为4800mm/min)。

对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/p(此时最大进给速度为19200mm/min)或0.005mm/p(此时最大进给速度为48000mm/min)。

判断脉冲当量是否正确:

用刀尖在当前位置扎一个点后,对应进给轴走100mm;

再扎一个点,测量两点间距离。

若两点间距离为100mm,则脉冲当量设置无误。

伺服电机

一般情况下,设定脉冲当量(p)为默认值0.001mm/p,再计算电子齿轮比(B/A)。

伺服电机的脉冲当量根据轴类型的不同,可分为:

直线轴

电子齿轮比与脉冲当量的关系为:

旋转轴

旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算伺服电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。

故伺服电机旋转轴脉冲当量的计算方法为:

步进电机

一般情况下,先设定细分数,再计算脉冲当量。也可先设定脉冲当量,再计算细分数。

步进电机的脉冲当量根据轴类型的不同,可分为:

直线轴

脉冲当量和细分数之间的关系为:

例如:某型号机床的X轴选用的丝杠导程为5毫米,步进电机的步距角为1.8度,工作在10细分模式。电机和丝杠采用连轴节直连。那么,X轴的脉冲当量为:

旋转轴

旋转轴脉冲当量是每个脉冲对应装夹工件的轴转动的度数。其与直线轴的区别在于:旋转轴的螺距值为360度。因此,计算步进电机旋转轴脉冲当量时,只需将螺距值换成360,其他计算方法相同。

4. 直线电机和旋转电机驱动开发 知乎

数控系统驱动伺服电机(旋转运动),带动滚珠丝杆旋转,滚珠丝杆上的螺母带动工作台做直线运动。

从机械传动的角度来看,从旋转运动到直线运动是由滚珠丝杆副实现的。

5. 直线电机和旋转电机相比以下正确的是

电动机功率怎么计算公式

单相电动机额定功率计算P=UIcosφ*η

U—线电压、I—线电流、φ—功率因数、η—电机效率

三相电动机额定功率计算P=1.732UIcosφ*η

U—相电压、I—相电流、φ—功率因数、η—电机效率

但电动机的实时功率是由负载决定的如果负载比较好测量也可用负载端的负载来计算:

对于转动力矩的电动机:P=T*n/9550*η(P功率单位KW、T转矩单位N、n转速单位R/min)。

用于直线运行的电动机:P=F*V/102*η(F力单位N、V速度单位m/s)

提升机、升降机的功率计算:P=Q*q•ΔH/102ΔH(Q单位时间内输送的质量kg/s、ΔH负荷输送的高度)

水泵电机计算:P=QH/6.12η(P电机功率KW、Q水泵流量m³/min、H扬程m)

步进电机功率计算:P=2πnM/60(P电机功率W、n转速R/min、M力矩N·M)

当然在电机运行过程中我们一般对电流和电压的监测是更为容易一些,但在负载率不一样时功率因数也不一样,只能通过近似特性来估算:

6. 直线电机和旋转电机的本质区别

电缸和直线电机的区别如下:

 直线电机是将电能转化成直线运动机械能,但是不需要任何中间转换机构的一种传动装置。也可以被看作是一个旋转马达,是分裂径向和扩散到一个平面的。与机械系统相比,直线电机有许多的优势,如有高速度和低速度,高加速度,不需维护,高精度,无空气回流。直线运动是没有齿轮、联轴器或滑轮的电机完成,这对许多应用来说是有意义的,因为排除了降低性能和缩短机械寿命的不必要的部件。

   电缸是一体化的产品设计的伺服电机和丝杆,伺服电机的旋转运动转换成线性运动,精确的速度控制,精确的转矩控制,以及精确的速度控制以及位置控制

电缸跟直线电机区别就是电缸是闭环控制,配置灵活,强度高。速度快,定位精度高,运动平稳,噪音低,节能,清洁,刚性高,耐冲击,超长寿命,维护简单,售后成本较低,因此被广泛用于造纸业、化工工业、汽车工业、电子工业、机械自动化工业、焊接工业等。

7. 直线电机和旋转电机相比有哪些缺点

直线电机的工作原理:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。

如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。

随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。

8. 直线电机和旋转电机相比有哪些优缺点

虽然x轴和z轴线性马达都属于线性马达,但是这两者在实际体验中还是存在区别的!

1、什么是线性马达?线性马达又称直线电动机。从字面上可以理解为直线运动,它的结构可以看成是一个普通的线性马达,从径向切开,然后对准。线性马达的正常工作需要在齐轴直线 "桥 "上连接一个刺针,以保证线性马达平稳转动。线性马达因为是对准的,所以不需要,它的 "塞斯 "和上下 "运动 "结构使两部分不与磁场接触,就像磁悬浮列车的结构一样

9. 直线电机和旋转电机结合应用

伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象,闭环控制。

步进电机:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,脉冲开环控制。

直线电机也叫线性电机,直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成

直驱电机:直接驱动式电机的简称.主要指电机在驱动负载时,不需经过传动装置(如传动皮带等).

10. 直线电机和旋转电机的区别

直线电机定子分为长定子和短定子,区别:

长定子结构本钱高、运转费用高,所以很少采用。直线电机与旋转电机相同,定子铁心也是由硅钢片叠成,外表开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。

顶一下
(0)
0%
踩一下
(0)
0%