返回首页

异步永磁同步电动机效率(永磁同步电机提高效率

来源:www.xrdq.ne   时间:2023-01-03 15:37   点击:233  编辑:admin   手机版

1. 永磁同步电机提高效率的方法

永磁同步电机调速的问题一直是工业应用中比较棘手的问题,要适用于多个场景和不同的使用环境,务必要对永磁同步电动机进行调速。那么是否能够调速?应该怎么调速?

嘉轩(JASUNG)了解到,永磁同步电动机调速有三种状态:

1、基频以下调速

磁场定向控制:磁场定向,即在d-q坐标系下,电机参数中,如励磁电流,影响力矩的部分,是参数投影到q轴的分量。而投影到d轴上的部分,则不必考虑,即通常所说的id=0方法。此方法下,电机最大输出转速的决定因素是控制器最高供电电压。磁场定向控制策略的局限在于,不能体现励磁电流影响磁场的部分参数变化,因此不能进行弱磁控制。

2、基频以上调速

直接转矩法,出发点是想要通过控制转矩公式中的参数去直接对转矩输出值产生影响。选择矩角作为控制对象。以内置式转子永磁同步电机为例,说明具体方法。在电源电压和定子磁场频率恒定的情况下,电机实时输出转矩,与矩角的正弦值成正比。

可以在离线状态下,计算每个转矩角对应的电磁转矩值,形成一张矢量表,存放在上位机。在电机控制器运行过程中,实时观测转矩和转矩角,并提取表格中的原始值进行比对。发现与表格的值有出入,则调整电源电压值,进行转矩修正。

直接转矩法,鲁棒性好,算法简单,并且不需要坐标变换,在早期是应用较多的一种控制方法。但这种方法在低转速情况下,控制精度急剧下降。因此可以选择仅在基频以下使用。

3、最大力矩电流比控制策略

将电流在d-q坐标系下解耦,再分别求取每个分量的转矩电流最大比,目的是获得确定励磁电流下的最大转矩。

用求取二阶导数的方式确定极大值的存在性。在调速区间内,对转矩电流比求导,二阶导数小于0,则转矩电流比最大值存在。

2. 永磁同步电机能效

永磁电机里面使用一定数量的永磁体。永磁体是一种能量密度比较高的磁性物质,它的使用可以使永磁电机的效率有一定的提高。一般来说,相同功率等级的永磁电机与异步电机比较,永磁电机的效率大于异步电机的效率15%左右。由此可见,永磁电机耗电量较异步电机少15%左右。

3. 永磁同步电机提高效率的方法有哪些

1、可以设置P0210参数,把电源电压设置低点。注意:大范围电压波动,设什么参数都不好使,而且还危险。

2、变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

3、当线路电压降低到临界电压时,保护电器的动作,称为欠电压保护,其任务主要是防止设备因过载而烧毁。

4. 永磁同步电机优化

旋转变压器与电机安装时,有三种对零或者说调零的方法:

1、将电机通一直流拉倒零位,通过调零装置将旋变的定子或转子也调到零位,然后紧固;

2、用仪器测量出电机转子与旋变零位的偏差,写入控制器中;

3、在电机控制器中内置“自适应”程序,自动测量旋变与电机零位的偏差。

5. 永磁同步电机效率提升办法

表贴式永磁同步电机的设计方法,包括以下设计步骤:

步骤1,确定表贴式永磁同步电机的基本结构参数,包括电机尺寸,极槽配合,结构材料,并优化定子槽口Bs0、槽宽Bs1和槽深Hs2的大小,使用有限元计算的方法使电机满足较好的电磁与机械性能;

步骤2,确定电机转子永磁体的极弧系数和削角角度α,以此来控制永磁体的形状,得出永磁体最佳的极弧系数和削角角度α的组合,具体的优化策略为使电机的削角角度α从0°开始每隔1°递增,削角角度α逐渐增大的同时,t1、t2的数值随之分别呈现出递增和递减的结果,t1、t2分别为合金护套导条外表面切向宽度和永磁体外表面切向宽度;

步骤3,根据永磁体优化后得出的极弧系数和削角角度α的形状,将每两块相邻永磁体之间的空隙使用金属导条填满,并将所有导条两端端部使用圆环将其连接为一个整体;要求永磁体和合金护套紧密贴合,在电机在一定转速运行时,合金护套为永磁体提供足够的支撑力,避免永磁体受离心力的作用而损坏;

步骤4,电机转子合金护套与永磁体紧密配合并安装于转轴上,所设计合金护套为内嵌式,而电机的气隙磁密与气隙长度成反比,较大的气隙长度不利于电机磁密的提升,电机磁密可以表示为下式:

式中,Fδ为气隙磁动势,Λ为气隙磁导,Kδ为气隙系数,μ0为气隙磁导率;

步骤5,表贴式永磁电机强度分析可使用材料力学中旋转圆盘和厚壁圆筒理论建立机械稳定方程,为保证护套和永磁体的安全可靠,护套和永磁体所受的最大拉力要小于材料的许用应力,护套和永磁体σSleeve所受拉力σPM、σSleeve表示为:

σPM=σp+σt1-σc1<[σ1]

σSleeve=σp+σc2<[σ2]

式中,σp为永磁体和护套之前的装配应力,由护套过盈装配所致;σt1为永磁体与转子铁芯的拉力,由二者之间的粘合剂所产生;σc1、σc2分别为永磁体和护套受到的离心拉力,由转子转动所致;[σi]为材料的许用应力,σsi为材料的抗拉强度,n为材料安全系数;新型内嵌式合金护套需要使用有限元计算的方法来对护套强度进行分析校验;

步骤6,永磁体在高温作用下会产生不可逆退磁,为避免永磁体在运行状态下失磁,需要对转子永磁体的涡流损耗进行控制;

步骤7,电机的定转子设计完成后,需要对电机的各方面性能进行进一步校验,验证电机是否满足设计要求,如果不满足,需要检查电机参数并返回到步骤2、3、4、5、6重新进行设计。

进一步,所述步骤2中,经过对永磁体切削角度的优化,当α为12.5度时,空载气隙磁密中的30次谐波和反电势中的3次谐波基本被消除,波形也更接近正弦曲线。

进一步,所述步骤2中还包括,永磁体和合金护套的宽度可以通过控制t1和t2的来调节,具体的调节方式为:当增加t1的值时,由于t1与t2的和为一个常数,t2得值随之减小,由此永磁体和护套导条的宽度比例随之发生改变,永磁体和合金护套不同的宽度配合具有不同的电磁和机械性能;同时永磁体的极弧系数可以通过控制t1来调节,不同的极弧系数也可以表现出不同的电机性能。

6. 永磁同步电机节能效果

4轮电动车如果配备2200W的永磁同步电机,效果是非常不错的,因为2200瓦的永磁同步电机,省电动力大,噪音非常小,非常适合,安装在4轮电动车上,使你的行驶噪音基本没有可以达到最佳的扭矩以及最佳的动力输出,配备2200瓦的电动车绝对是最佳选择,希望我的回答能够帮助到你。

7. 同步永磁电机优缺点

1、结构简单 运行可靠

永磁电机采用稀土永磁材料替代了异步电机的励磁绕组,结构简单、运行可靠。

2、体积小,重量轻,耗材少

由于稀土永磁材料的高磁能积和高矫顽力,实现了电机磁路系统的小型化、轻量化。

3、节能高效

一是由于磁路系统的小型化,绕组亦趋小,从而减少了电机的铜损和铁损,效率提高;二是在转子上嵌人稀土永磁材料后,在正常工作时转子与定子磁场同步运行,转子因无绕组所以无感生电流,不存在转子电阻和磁滞损耗;三是定子电流中无励磁电流分量,功率因数高,定子电流小,定子侧铜损下降,提高了电机效率。

4、调速大转矩

可通过附带控制柜根据工况需求和变化调整转速获得理想的转速和足够大的与工艺要求相匹配的转矩。避免无谓的功率消耗。

5、起动力矩大

在需要大启动转矩的设备中,较好地解决了“大马拉小车”的现象,提高了系统的运行效能。

顶一下
(0)
0%
踩一下
(0)
0%