1. 同步电机的调速方法有几种
一、变极对数调速方法
这种调速方法是用改变定子绕组的接红方式,来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
二、 变频调速方法
变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。
其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。
三、串级调速方法
串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
其特点为:1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;3、调速装置故障时可以切换至全速运行,避免停产;4、晶闸管串级调速功率因数偏低,谐波影响较大。
四、绕线式电动机转子串电阻调速方法
绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。
五、定子调压调速方法
改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。
为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速一般适用于100KW以下的生产机械。
调压调速的特点:1、调压调速线路简单,易实现自动控制;2、调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。
六、电磁调速电动机调速方法
电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。
当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁极的转子按同一方向旋转,但其转速恒低于电枢的转速N1,这是一种转差调速方式,变动转差离合器的直流励磁电流,便可改变离合器的输出转矩和转速。本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。
电磁调速电动机的调速特点:1、装置结构及控制线路简单、运行可靠、维修方便;2、调速平滑、无级调速;3、对电网无谐影响;4、速度失大、效率低。
七、液力耦合器调速方法
液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速。本方法适用于风机、水泵的调速。
其特点为:1、功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要;2、结构简单,工作可靠,使用及维修方便,且造价低;3、尺寸小,能容大;4、控制调节方便,容易实现自动控制。
2. 同步电机调速器
永磁同步电机转数和磁场同步,不可调速。
3. 同步电机的调速方法有几种类型
变极调速
由于一般异步电动机正常运行时的转差率S都很小,电机的转速n= n1(1-S)决定于同步转速n1。从n1=60f1/P可见,在电源频率f1不变的情况下,改变定子绕组的极对数P,同步转速n1就发生变化,例如极对数增加一倍,同步转速就下降一半,随之电动机的转速也约下降一半。显然,这种调速方法只能做到一级一级地改变转速,而不是平滑调速。
变极电动机一般都用鼠笼式转子,因为鼠笼转子的极对数能自动地随着定子极对数的改变而改变,使定、转子磁场的极对数总是相等而产生平均电磁转矩。若为绕线式转子,则定子极对数改变时,转子绕组必须相应地改变接法以得到与定子相同的极对数,很不方便。
要使定子具有两种极对数,容易得到的办法是用两套极对数不同的定子绕组,每次用其中一套,即所谓双绕组变极,显然,这是一个很不经济的办法,只在特殊情况下才采用。理想的办法是:只装一套定子绕组而用改变绕组接法来获得两种或多种极对数,即所谓单绕组变极。对于倍极比情况(如2/4极、4/8极等),单绕组变极早已为人们所采用,随着科学技术的发展,非倍极比(如4/6极、6/8极等)以及三速(如4/6/8等)采用单绕组变极也得到广泛应用。
变频调速
当电源的频率f1改变时,同步转速n1=60f1/P与频率成正比变化,于是电动机的转速n也随之改变,所以改变电源频率就可以平滑地调节异步电动机的转速。
变频调速按控制方式不同,可分为U/f控制、转差频率控制、矢量控制和直接转矩控制等。
4. 异步电机的调速有哪几种方式
三相异步电动机转速公式为: n=60f/p(1-s)从上式可见,改变供电频率 f 、电动机的极对数 p 及转差率 s 均可太到改变转速 的目的。从调速的本质来看, 不同的调速方式无非是改变交流电动机的同步转速 或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电 阻调速、转波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合 器等调速。 改变同步转速的有改变定子极对数的多速电动机, 改变定子电压、 频 率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看, 有高效调速方法与低效调速方法两种: 高效调速指时 转差率不变, 因此无转差损耗, 如多速电动机、 变频调速以及能将转差损耗回收 的调速方法(如串级调速等) 。有转差损耗的调速方法属低效调速,如转子串电 阻调速方法, 能量就损耗在转子回路中; 电磁离合器的调速方法, 能量损耗在离 合器线圈中; 液力偶合器调速, 能量损耗在液力偶合器的油中。 一般来说转差损 耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到 调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械, 如金属切削机床、 升降机、起重设备、 风机、水泵等。 二、变频调速方法变频调速是改变电动机定子电源的频率, 从而改变其同步转速的调速方法。 变频调速系统主 要设备是提供变频电源的变频器, 变频器可分成交流-直流-交流变频器和交流-交流变频 器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差, 达到调 速的目的。 大部分转差功率被串入的附加电势所吸收, 再利用产生附加的装置, 把吸收的转 差功率返回电网或转换能量加以利用。 根据转差功率吸收利用方式, 串级调速可分为电机串 级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速 70%- 90%的生产机械 上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻, 使电动机的转差率加大, 电动机在较低的转速下运行。 串入的电阻越大,电动机的转速越低。此方法设备简单, 控制方便,但转差功率以发热的形 式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法当改变电动机的定子电压时, 可以得到一组不同的机械特性曲线, 从而获得不同转速。 由于 电动机的转矩与电压平方成正比, 因此最大转矩下降很多, 其调速范围较小, 使一般笼型电 动机难以应用。 为了扩大调速范围, 调压调速应采用转子电阻值大的笼型电动机, 如专供调 压调速用的力矩电动机, 或者在绕线式电动机上串联频敏电阻。 为了扩大稳定运行范围, 当 调速在 2:1 以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗 器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点: 调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于 100KW 以下的生产机械。 六、电磁调速电动机调速方法电磁调速电动机由笼型电动机、 电磁转差离合器和直流励磁电源(控制器) 三部分组成。直 流励磁电源功率较小, 通常由单相半波或全波晶闸管整流器组成, 改变晶闸管的导通角, 可 以改变励磁电流的大小。 电磁转差离合器由电枢、 磁极和励磁绕组三部分组成。 电枢和后者没有机械联系, 都能自由 转动。 电枢与电动机转子同轴联接称主动部分, 由电动机带动; 磁极用联轴节与负载轴对接 称从动部分。 当电枢与磁极均为静止时, 如励磁绕组通以直流, 则沿气隙圆周表面将形成若 干对 N、S 极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁 极间相对运动, 因而使电枢感应产生涡流, 此涡流与磁通相互作用产生转矩, 带动有磁极的 转子按同一方向旋转,但其转速恒低于电枢的转速 N1,这是一种转差调速方式,变动转差 离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点: 装置结构及控制线路简单、运行可靠、维修方便; 调速平滑、无级调速; 对电网无谐影响; 速度失大、效率低。 本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。 七、液力耦合器调速方法液力耦合器是一种液力传动装置, 一般由泵轮和涡轮组成, 它们统称工作轮, 放在密封壳体 中。壳中充入一定量的工作液体, 当泵轮在原动机带动下旋转时, 处于其中的液体受叶片推 动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力, 使其带动生产机械运转。 液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。 在 工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为: 功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要; 结构简单,工作可靠,使用及维修方便,且造价低; 尺寸小,能容大; 控制调节方便,容易实现自动控制。 本方法适用于风机、水泵的调速。
5. 同步电机如何调速
一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式,来改变笼型电动机定子极对数达到调速目的。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、 变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
三、串级调速方法,串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
四、绕线式电动机转子串电阻调速方法,绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
五、定子调压调速方法,改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。六、电磁调速电动机调速方法,电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。
直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。七、液力耦合器调速方法,液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。
壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。
液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。
在工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速。本方法适用于风机、水泵的调速
6. 同步电机的调速方法有几种图片
同步电机的转速只能由供电频率决定,如要调整只能改变供电频率(可使用变频器)。
异步电机调整在小范围并且在转距比较恒定时,可使用电磁调速器进行调整,其原理是通过改变电机电压使差步率发生改变来调速。如果要进行大范围调整或对转距有要求时使用变频器调整。
7. 同步电动机的调速方法有哪些
电动机降低转速的方法,有以下三种方法:
1、降低端电压。这种方法由于电源电压一般是固定的,难以改变。而且由于端电压降低,将导致激磁电流减小,因而又会使电动机转速有升高的趋势,所以这种方法很少采用。
2、增加激磁电流,以增强磁场。这种方法将受磁路饱和的限制,同时由于电源电压难以升高,激磁绕组的固有电阻不能改变,所以这种方法也有一定的局限性。
3、在电枢回路中串联电阻,降低电枢端电压。这种方法最容易实现,所以是降低电动机转速的一种最常用的方法。