返回首页

步进电动机的选型ppt(步进电动机的选型方法)

来源:www.xrdq.ne   时间:2022-12-30 17:00   点击:105  编辑:admin   手机版

1. 步进电动机的选型方法

步进电机选择方法:

1、判断需多大力矩: 静扭矩是选择步进电机的主要参数之一。负载大时,需采用大力矩电机。力矩指标大时,电机外形也大。

2、判断电机运转速度: 转速要求高时,应选相电流较大、电感较小的电机,以增加功率输入。且在选择驱动器时采用较高供电电压。

3、选择电机的安装规格: 如57、86、110等,主要与力矩要求有关。

4、确定定位精度和振动方面的要求情况: 判断是否需细分,需多少细分。

2. 步进电动机的选型方法有哪些

由于步进电机及驱动器型号较多、种类较多,用户在选择时应有一定的讲究,这样才能以最优的性能、最低的价格选择好自己所需的产品。选取原则(仅供参考):

1、首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。或者根据负载特性从理论上计算出来。由于步进电机是控制类电机,所以目前常用步进电机的最大力矩不超过45Nm,力矩越大,成本越高,如果您所选择的电机力矩较大或超过此范围,可以考虑加配减速装置。

2、确定步进电机的最高运行转速。转速指标在步进电机的选取时至关重要,步进电机的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如:驱动器的驱动电压、电机的相电流、电机的相电感、电机大小等等,一般的规律是:驱动电压越高,力矩下降越慢;电机的相电流越大,力矩下降越慢。在设计方案时,应使电机的转速控制在600转/分或800转/分以内,当然这样说很不规范,可以参考〈矩-频特性〉。

3、根据负载最大力矩和最高转速这两个重要指标,再参考〈矩-频特性〉,就可以选择出适合自己的步进电机。如果您认为自己选出的电机太大,可以考虑加配减速装置,这样可以节约成本,也可以使您的设计更灵活。要选择好合适的减速比,要综合考虑力矩和速度的关系,选择出最佳方案。

4、最后还要考虑留有一定的(如50%)力矩余量和转速余量。

5、可以先选择混合式步进电机,如果由于价格因素,可以选取反应式步进电机。

6、尽量选取细分驱动器,且使驱动器工作在细分状态。

7、选取时且勿走入只看电机力矩这一个指标的误区,也就是说并非电机的扭矩越大越好,要和速度指标一起考虑。

8、超小型驱动器和微型驱动器是靠外壳作为散热器的,应固定在较大、较厚的金属板上或外加风机散热,如果没有散热条件,而驱动器又工作在转速较低的场合(这时驱动器发热较大),可以选用带风机的90型驱动器代替。

3. 步进电机系列参数

步进电机型号由4部分组成,分别代表机座号、电机类型(BYF代表混合式,BC代表反应式)、相数、电机转子齿数。

1、机座号:又叫电机外径,一共有28、42、57、86、110、130型号。

2、电机类型反应式:定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。

永磁式:永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。

其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。

混合式:混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。

其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。

3、相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。

4、转子齿数转子齿数是指定转子铁芯上转子小齿的数量。

转子齿数的不同会改变单相各个线圈之间的互补性;改变线圈所匝链的磁链的极性,对单相线圈磁链的谐波成分造成影响,进而对电机的谐波特性造成影响,还影响电机的功率密度。 扩展资料1、步距角的选择电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。

电机的步距角应等于或小于此角度。

2、静力矩的选择静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。

单一的惯性负载和单一的摩擦负载是不存在的。

直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。

3、电流的选择静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流。

4. 步进电机怎么选型号

没有其它步进电机的细分到多少为最佳,只有以下答案。

步进电机细分最佳是1.5合理。

移动300mm需要的脉冲数300/200=电机转1.5转;脉冲数=1.5转 * 1000P/转=1500Pulse //驱动器接收1500个脉冲,则电机带动300mm;步距角,为一个脉冲使得步进电机旋转的角度。例如步距角1.2度,那么电机转一圈需要300个脉冲。驱动器细分设置为1000步/转,是指驱动器接收到1000个脉冲则驱动电机转一圈,为了提高控制的精度和控制的方便

5. 步进电动机的选择

与软件设置和雕刻机硬件都有关!

步进电机有步距角(涉及到相数),静转矩,及电流三大要素组成.一旦三大要素确定,步进电机的型号便确定下来了.

1,确定电机类型.

2,选择脉冲当量,步距角.

开环控制系统中,脉冲当量是衡量机床加工精度的一个基本参数,是机床的最小设定单位.

3,速比的确定.

θs—步距角(°)

h——丝杠导程(mm)

δ—脉冲当量(mm/脉冲)

步进电机是一种作为控制用的特种电机,它的旋转是以固定的角度(称为“步距角”)一步一步运行的,其特点是没有积累误差,所以广泛应用于各种开环控制。步进电机的运行要有一电子装置进行驱动,这种装置就是步进电机驱动器,它是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说:控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一步距角。所以步进电机的转速与脉冲信号的频率成正比。

所以,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位目的。

相对于每一个脉冲信号的机床运动部件的位移量称为脉冲当量,又称为最小设定单位。它的大小视机床精度而定,一般为0.01~0.0005mm.。脉冲当量影响数控机床的加工精度,它的值取得越小,加工精度越高。

6. 步进电机电源选择

1个步进电流1.5A在空载或轻载下实际是达不到这个电流的所以,你24V1.5A的电源也可以驱动,但你要是多个1.5A的步进电机,则需要X*1.5A*1.2倍电流的电源来驱动。。设你要驱动4个的话就是4*1.5*1.2=7.2A 后面1.2是安全预量,防止瞬间电流过大烧坏开关电源。也就是说至少保证6A的电源,建议-7.5A

你就是3000A的电源,用1个0.0003A的电机都没事,只是太浪费。

7. 步进电机选型需要哪些参数

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。

2、静力矩的选择

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)。

3、电流的选择

静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流。

步进电机驱动要求:

1、能够提供较快的电流上升和下降速度,使电流波形尽量接近矩形。

具有供截止期间释放电流流通的回路,以降低绕组两端的反电动势,加快电流衰减。

2、具有较高韵功率及效率。

步进电机驱动器,它是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说:控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一个步距角。也就是说步进电机的转速与脉冲信号的频率成正比。所以控制步进脉冲信号的频率,就可以对电机精确调速;控制步进脉冲的个数,就可以对电机精确定位。步进电机驱动器有很多,应以实际的功率要求合理的选择驱动器。

8. 步进电动机的选型方法有

1、电源的功率一般按电机的工作电流*工作电压*1.40或1.60来选择,因为一般步进驱动器驱动对通过电机线圈的电流会有约70%或80%的限制。笔者认为供电电流为实际电流的2倍比较合适,输入电流取额定电流的140%或160%。

2、电源的类型,选择非稳压型直流电源。因为大部分开关电源不是设计用于处理感性负载。首先,当电机在减速时,会有一个再生电压,负载会将功率传递会电压,导致开关电源的输出电压增加,超过开关电源的设定值,稳压型开关电源可能会保护,导致短时没有输出。其次,稳压型开关电源旨在提供持续的额定功率,无法提供对电机至关重要的峰值电流。建议选择厂家配套的电源,或自己用环形变压器、整流模块、电容做直流电源。

9. 步进电动机的选型方法是

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。

1、电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。

2、步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)

3、进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下: P=Ω·M Ω=2π·n/60 P=2πnM/60 其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米 P=2πfM/400(半步工作) 其中f为每秒脉冲数(简称PPS)

10. 步进电动机参数

步进电机的控制策略:

1、PID控制

PID控制作为一种简单而实用的控制方法,在步进电机驱动中获得了广泛的应用。它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),将偏差的比例、积分和微分通过线性组合构成控制量,对被控对象进行控制。文献将集成位置传感器用于二相混合式步进电机中,以位置检测器和矢量控制为基础,设计出了一个可自动调节的PI速度控制器,此控制器在变工况的条件下能提供令人满意的瞬态特性。文献根据步进电机的数学模型,设计了步进电机的PID控制系统,采用PID控制算法得到控制量,从而控制电机向指定位置运动。最后,通过仿真验证了该控制具有较好的动态响应特性。采用PID控制器具有结构简单、鲁棒性强、可靠性高等优点,但是它无法有效应对系统中的不确定信息。

目前,PID控制更多的是与其他控制策略相结合,形成带有智能的新型复合控制。这种智能复合型控制具有自学习、自适应、自组织的能力,能够自动辨识被控过程参数,自动整定控制参数,适应被控过程参数的变化,同时又具有常规PID控制器的特点。

2、自适应控制

自适应控制是在20世纪50年代发展起来的自动控制领域的一个分支。它是随着控制对象的复杂化,当动态特性不可知或发生不可预测的变化时,为得到高性能的控制器而产生的。其主要优点是容易实现和自适应速度快,能有效地克服电机模型参数的缓慢变化所引起的影响,是输出信号跟踪参考信号。文献研究者根据步进电机的线性或近似线性模型推导出了全局稳定的自适应控制算法,这些控制算法都严重依赖于电机模型参数。文献将闭环反馈控制与自适应控制结合来检测转子的位置和速度,通过反馈和自适应处理,按照优化的升降运行曲线,自动地发出驱动的脉冲串,提高了电机的拖动力矩特性,同时使电机获得更精确的位置控制和较高较平稳的转速。

目前,很多学者将自适应控制与其他控制方法相结合,以解决单纯自适应控制的不足。文献设计的鲁棒自适应低速伺服控制器,确保了转动脉矩的最大化补偿及伺服系统低速高精度的跟踪控制性能。文献实现的自适应模糊PID控制器可以根据输入误差和误差变化率的变化,通过模糊推理在线调整PID参数,实现对步进电机的自适应控制,从而有效地提高系统的响应时间、计算精度和抗干扰性。

3、矢量控制

矢量控制是现代电机高性能控制的理论基础,可以改善电机的转矩控制性能。它通过磁场定向将定子电流分为励磁分量和转矩分量分别加以控制,从而获得良好的解耦特性,因此,矢量控制既需要控制定子电流的幅值,又需要控制电流的相位。由于步进电机不仅存在主电磁转矩,还有由于双凸结构产生的磁阻转矩,且内部磁场结构复杂,非线性较一般电机严重得多,所以它的矢量控制也较为复杂。文献[8]推导出了二相混合式步进电机d-q轴数学模型,以转子永磁磁链为定向坐标系,令直轴电流id=0,电动机电磁转矩与iq成正比,用PC机实现了矢量控制系统。系统中使用传感器检测电机的绕组电流和转自位置,用PWM方式控制电机绕组电流。文献推导出基于磁网络的二相混合式步进电机模型,给出了其矢量控制位置伺服系统的结构,采用神经网络模型参考自适应控制策略对系统中的不确定因素进行实时补偿,通过最大转矩/电流矢量控制实现电机的高效控制。

4、智能控制的应用

智能控制不依赖或不完全依赖控制对象的数学模型,只按实际效果进行控制,在控制中有能力考虑系统的不确定性和精确性,突破了传统控制必须基于数学模型的框架。目前,智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制、神经网络和智能控制的集成。

4.1模糊控制

模糊控制就是在被控制对象的模糊模型的基础上,运用模糊控制器的近似推理等手段,实现系统控制的方法。作为一种直接模拟人类思维结果的控制方式,模糊控制已广泛应用于工业控制领域。与常规控制相比,模糊控制无须精确的数学模型,具有较强的鲁棒性、自适应性,因此适用于非线性、时变、时滞系统的控制。文献[16]给出了模糊控制在二相混合式步进电机速度控制中应用实例。系统为超前角控制,设计无需数学模型,速度响应时间短。

4.2神经网络控制

神经网络是利用大量的神经元按一定的拓扑结构和学习调整的方法。它可以充分逼近任意复杂的非线性系统,能够学习和自适应未知或不确定的系统,具有很强的鲁棒性和容错性,因而在步进电机系统中得到了广泛的应用。文献将神经网络用于实现步进电机最佳细分电流,在学习中使用Bayes正则化算法,使用权值调整技术避免多层前向神经网络陷入局部极小点,有效解决了等步距角细分问题。

顶一下
(0)
0%
踩一下
(0)
0%